Republic of Iraq Ministry of Higher Education & Scientific Research Supervision and Scientific Evaluation Directorate Quality Assurance and Academic Accreditation International Accreditation Dept.

Academic Program Specification Form For the Academic Year 2020-2021

University: University of Technology College: Biomedical Engineering Department Branch of Bio-Mechanics Date of Form Completion: June 2021

Dean's Name:Prof.Dr. Wisam`am K, Hamdan Date: 26 / 6 /2021 Signature:

Dean' sAssistant for Scientific Affairs: Assist. Prof. Dr. Saad M. Ali Date: 26/6/2021 Signature: The College Quality Assurance and University Performance Manager:Dr.Taqwa O. Fahad Date: 26 / 6 / 2021 Signature:

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

PROGRAMME SPECIFICATION

This Programme Specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the programme.

1. Teaching Institution	University of Technology
2. University Department/Centre	Biomedical Engineering Department
3. Programme Title	Biomedical Engineering Department/Bio-Mechanics Branch
4. Title of Final Award	BSc in Biomedical Engineering
5. Modes of Attendance offered	Courses
6. Accreditation	National Accreditation of Iraqi Universities
7. Other external influences	Summer training- Industrial visits
8. Date of production/revision of this	June 2021
specification	

9. Aims of the Programme

The objectives of the academic program lie in achieving scientific integration in the field of engineering and medical specialization. This program gives the integrated engineering background version for medical device engineers and biomechanical engineers, as well as supplying the health institutions with experienced engineers with scientific expertise in order to improve medical treatment for hospitals health.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

A. Knowledge and Understanding

The department aims to the integration sate between medical and engineering specialties, so that the department exits Engineering disciplines supporting the medical specialization in the fields of medical technologies and biomechanics from By providing the appropriate knowledge base for both specializations in the five academic years. It also provides the scientific base for study and analysis problems through a group of laboratories specialized in these areas, whether they deal with Equipment or engineering tests for biological materials.

B. Subject-specific skills

- B1: Perform engineering duties required by medical care units in hospitals.
- B2: Work as experts and specialists in centers for the design and manufacture of medical devices and equipment.
- B3: Experts and specialists in physiotherapy centers and prosthetic units production and medical devices centers
- B4: Work in medical research centers, such as universities that work on developing medical devices and Solving biological and health problems.

Teaching and Learning Methods

- 1. Lecture presentation
- 2. Tutorials
- 3. Scientific tour
- 4. Student center
- 5. Team project
- 6. Lab and Experimental learning
- 7. Technical Application

Assessment methods

- 1. Quiz, report, assignments
- 2. Mid-term exam and Final term exam
- C. Thinking Skills

C1: Engineering problems solving skills in a scientific way.

C2: Ability to analyzing, designing, verification, and testing bio-medical engineering issues.

C3: The capability of performing the required tests, in addition to conduct, compare and analyze the results.

C4: Bio-medical engineering devices development.

D. General and Transferable Skills (other skills relevant to employability and personal development)

- 1. Verbal communication
- 2. Team Work
- 3. Analyzing & Investigating
- 4. Initiative / self-motivation
- 5. Written communication
- 6. Planning & Organizing
- 7. Flexibility
- 8. Time management

11. Programme Structure

Level/Year	Course or Module Code	Course or Module Title	Credit hours
First Year/Course 1	WRKS101	WROKSHOP - I	2
	ENGL103	ENGLISH LANGUAGE - I	2
	COMP105	COMPUTER PRINCIPLES	3
	BMED107	ANATOMY AND PHYSIOLOGY I	2
	BMED109	CALCULUS - I	2
	BMED111	ENGINEERING MECHANICS - STATICS	2
	BMED113	ENGINEERING DRAWING	2
First Year/Course 2	WRKS102	WORKSHOP - II	2
	UOT102	HUMAN RIGHTS & Democracy	2
	BMED106	BIOMEDICAL COMPUTER APPLICATIONS	3
	BMED108	ANATOMY AND PHYSIOLOGY II	2
	BMED110	CALCULUS - II	2
	BMED112	ENGINEERING MECHANICS - DYNAMICS	2
	BMED114	Computer Aided Drafting	2
Second Year/	BMED201	MECHANICS OF MATERIALS I	3
Course 1	BMED203	MATERIALS SCIENCE	3
	BMED205	MATHEMATICS - I	2
	BMED207	INTRODUCTION TO BME I	2
	BMED209	Medical Physics	2
	BMED211	Thermodynamics Principles	3
	BMED213	ELECTRICAL ENGINEERING - DC	3

Second Year/	BMED202	MECHANICS OF MATERIALS II	3
Course 2	BMED204	BIOMATERIALS AND	3
		BIOCOMPATIBILITY	5
	BMED206	MATHEMATICS - II	2
	BMED208	INTRODUCTION TO BME II	2
	BMED210	Biochemistry	3
	BMED212	Bio fluid	3
	BMED214	ELECTRICAL ENGINEERING - AC	3
			0
Third Year/	BM311	Anatomy and physiology III	3
Course 1	BIC312	Biomechanics I	3
	BIC313	Engineering analysis	2
	BIC314	Human rights	2
	BM315	Mechanical design	3
	BIC316	Medical instrumentations	2
	BM317	Electronics	3
	BM318	design and application of biomaterial	2
	211010		~
Third Year/	BM321	Anatomy and physiology IV	3
Course 2	BIC322	Biomechanics II	3
0001002	BIC323	Numerical analysis	2
	BIC324	Democracy and Freedom	2
	BIC325	Biomedical signal processes	2
	BIC326	CAD/ CAM	2
	BM327	Advance electronics	3
	BM328	Advanced biomaterials	3
	DIVIJZO	Advanced bioinaterials	5
Fourth Year/	BM411	Histology	3
Course 1	BM412	Microsystem and Nanotechnology	2
Course 1	BM412 BM413	Medical Electronics	2
	BIC414	Design of medical device	3
	BIC415	Engineering statistics	2
	BIC415 BIC416	Image process	3
	BIC410 BM417	Artificial limbs I	3
	BIC418	Project	2
	DIC410		Δ
Fourth Year/	BM421	Diseases of bones and joints	2
Course 2	BM421 BM422	Biotribology	3
Course 2	BIC423	Nuclear medicine techniques	2
	BIC423 BIC424	Nuclear medicine techniques Fabrication of medical devices	2
	BIC424 BM425	Biostatistics	2
	BIC426		2 2
	BIC420 BM427	Bioimaging system Artificial limbs II	3
	BIC428		2
Eifth Vaar		Project Project	3
Fifth Year/ Course 1	BIC511	Project Medical Information	
Course 1	BIC512	Medical Informatics	2
	BM513	Biocompatibility	3
	BIC514	Biomedical sensors	3

	BM515	Drug delivery	2
	BIC516	Writing skills	2
	BM517	Cell biotechnology	2
	BIC518	Neurobiology engineering	2
	BIC519	Advanced English language I	2
Fifth Year/	BIC521	Project	3
Course 2	BIC522	Medical radiography	2
	BM523	Nutrition	2
	BM524	Tissue engineering	3
	BM525	Transport phenomena	2
	BM526	Fiber Optics	2
	BIC527	Hospital engineering	2
	BM528	Bioelectromagnetic	3
	BIC529	Advanced English language II	2

13. Personal Development Planning

Urging the student to realize the importance of continuing self-learning and acquiring new techniques and skills in the field of specialization

14. Admission criteria.

Students are admitted to the college according to:

- Their average grades on the Baccalaureate.
- Student desire.
- The capacity of the department.

15. Key sources of information about the programme

•The official website of the university

- •The college's official website
- •The university's guidelines booklet
- •Vocabulary and curricula of scientific lessons for the college

								Cı	urricu	lum S	Skills	Мар																	
		please	e tick in th	e rele	evant	boxe	s whe	ere in	divid	ual Pi	ogra	mme	Learı	ning (Outco	mes a	are be	eing a	issess	ed									
														Prog	ramm	e Lea	rning	Outo	come	s		1	-						
Year / Level	Course Code	Course Title	Core (C) Title or Option		1		-	e and nding			Su	bject	-spec	ific sk	cills		Thi	inkir	ng Sk	cills	1	Ski	ills (or) (bloy:	Othe	r ski ty ar	nsfei Ils re nd pe ent	eleva	nt
			(0)	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	B4	B5	C1	C2	C3	C4	C5	C6	D1	D 2	D3	D4	D5	D6	D7	D8
	WRKS101	WROKSHOP - I	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	ENGL103	ENGLISH LANGUAGE - I	С	*	*	*	*	*	*	*	*	*	*	*		*		*	*	*		*	*	*	*	*	*	*	*
	COMP105	COMPUTER PRINCIPLES	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BMED107	ANATOMY AND PHYSIOLOGY I	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
First	BMED109	CALCULUS - I	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
Year/ Course 1	<u>BMED111</u>	ENGINEERING MECHANICS - STATICS	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	BMED113	ENGINEERING DRAWING	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	WRKS102	WORKSHOP - II	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	<u>UOT102</u>	HUMAN RIGHTS & Democracy	С	*	*	*	*	*	*	*	*	*	*	*		*		*	*	*		*	*	*	*	*	*	*	*
First	<u>BMED106</u>	BIOMEDICAL COMPUTER APPLICATIONS	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
Year/ Course 2	<u>BMED108</u>	ANATOMY AND PHYSIOLOGY II	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BMED110	CALCULUS - II	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	BMED112	ENGINEERING MECHANICS - DYNAMICS	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*

								Cı	urricu	lum S	Skills	Мар																	
		pleas	e tick in th	e rele	evant	boxe	s whe	ere in	divid	ual Pi	rogra	mme	Lear	ning (Dutco	mesa	are be	eing a	ssess	ed									
Year / Level	Course Code	Course Title	Core (C) Title or				-	e and nding			Su	bject				e Lea		-	ome: ng Sk			Ski	lls (or) (bloya	Othe	r ski ty ar	lls re nd pe	rable eleva ersor	ant
			Option (O)	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	В4	B5	C1	C2	C3	C4	C5	C6	D1	D 2	D3	D4	D5	D6	D7	D8
	BMED114	Computer Aided Drafting	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	<u>BMED201</u>	MECHANICS OF MATERIALS	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BMED203	MATERIALS SCIENCE	C	*	*	*	*	*	*	*	*	*	*	*		*		*	*	*		*	*	*	*	*	*	*	*
	BMED205	MATHEMATICS - I	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
Second	BMED207	INTRODUCTION TO BME I	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
Year/	BMED209	Medical Physics	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
Course 1	BMED211	Thermodynamics Principles	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	BMED213	ELECTRICAL ENGINEERING - DC	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	<u>BMED202</u>	MECHANICS OF MATERIALS	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
Casand	<u>BMED204</u>	BIOMATERIALS AND BIOCOMPATIBILITY	С	*	*	*	*	*	*	*	*	*	*	*		*		*	*	*		*		*	*	*	*	*	*
Second Year/	BMED206	MATHEMATICS - II	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
Course 2	BMED208	INTRODUCTION TO BME II	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	BMED210	Biochemistry	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BMED212	Bio fluid	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BMED214	ELECTRICAL ENGINEERING -	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*

								Cı	urricu	lum S	Skills	Мар																	
		pleas	se tick in th	e rele	evant	boxe	s who	ere in	divid	ual Pr	rogra	mme	Learr	ning C	Jutco	mes a	are be	eing a	issess	ed									
													1	Progr	ramm	e Lea	rning	; Outo	come	5									
Year / Level	Course Code	Course Title	Core (C) Title or				wledge erstar	e and nding			Su	ıbject-	speci	ífic sk	ills		Thi	inkin	ıg Sk	cills		Ski	ills (d	or) C bloya	Othe abilit	er ski	lls re nd pe	eleva eleva ersor	ant
			Option (O)	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	B4	B5	C1	C2	СЗ	C4	C5	C6	D1	D 2	D3	D4	D5	D6	D7	D8
		AC																											
		T	Τ										['				[[!	[1
																			<u> </u>								 		
	<u>BI311</u>	MEMS Design	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BIC312	Biomechanics I	С	*	*	*	*	*	*	*	*	*	*	*		*		*	*	*		*	*	*	*	*	*	*	*
	BIC313	Engineering analysis	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	BIC314	Human rights	С	*	*	*	*	*	*	*						*	*	*	*	*		*		*	*	*	*	*	*
Third Voor (<u>BI315</u>	Biosignals and Biosystems	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
Year/ Course 1	BIC316	Medical instrumentations	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	<u>BI317</u>	Medical Electronics I	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	ļ			\square		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>	 	<u> </u>			└─ ′	<u> </u>		<u> </u>			ا ا			ļ!	\square
				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	' ا		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>		<u> </u>		<u> </u>	ا ا		ا ــــــــــــــــــــــــــــــــــــ	<u> </u>	\square
	<u>BI321</u>	MEMS Evlaution	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BIC322	Biomechanic П	С	*	*	*	*	*	*	*	*	*	*	*		*		*	*	*		*	*	*	*	*	*	*	*
Third	<u>BIC323</u>	Numerical analysis	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
Year/ Course 2	BIC324	Democracy and Freedom	С	*	*	*	*	*	*	*						*	*	*	*	*		*		*	*	*	*	*	*
	<u>BIC325</u>	Biomedical signal process	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BIC326	CAD/ CAM	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*

								С	urricu	lum S	kills	Мар																	
		pleas	e tick in th	ne rele	evant	boxe	s whe	ere in	divid	ual Pi	ogra	mme	Learı	ning (Dutco	mes	are b	eing a	ssess	ed									
														Prog	ramm	e Lea	Irning	; Outo	ome	5									
Year / Level	Course Code	Course Title	Core (C) Title or				-	e and nding			Su	bject	spec	ific sk	tills		Th	inkir	ng Sk	tills	-	Ski	lls (or) (bloya	Othe abili	er ski	nsfei ills re nd pe ent	eleva	ant
			Option (O)	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	B4	B5	C1	C2	С3	C4	C5	C6	D1	D 2	D3	D4	D5	D6	D7	D8
	<u>BI327</u>	Medical Electronics II	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	<u>BI328</u>	Biomaterials inspection.	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	DIAAA	Introduction to		*	*	*	*	*	*	*	*	*	*	- *		*	- *	*	*	*		- *	*	*	*	*	*	*	*
	<u>BI411</u>	Introduction to Nanotechnology	С																	•		•							
	<u>BI412</u>	Mechatronic systems	C	*	*	*	*	*	*	*	*	*	*	*		*		*	*	*		*		*	*	*	*	*	*
	<u>BI413</u>	Nuclear medicine	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
Fourth	<u>BIC414</u>	Design of medical device	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
Year/ Course 1	<u>BIC415</u>	Engineering statistics	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
dourse 1	<u>BIC416</u>	Image processing	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	<u>BIC417</u>	Project	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
																											<u> </u>		
					_	_	_	_	_		_	_	_	_		_				_		_	_						
	<u>BI421</u>	NEMS	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	<u>BI422</u>	Genetic devices	C	*	*	*	*	*	*	*	*	*	*	*		*		*	*	*		*		*	*	*	*	*	*
Fourth	<u>BIC423</u>	Nuclear medicine techniques	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
Year/ Course 2	<u>BIC424</u>	Fabrication of medical devices	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	<u>BI425</u>	Introduction to robotics	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BIC426	Bioimaging system	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	<u>BIC427</u>	Project	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*

								C	urricu	lum S	Skills	Мар																	
		pleas	e tick in th	e rele	evant	boxe	s whe	ere in	divid	ual Pi	rogra	mme																	
Year / Level	Course Code	Course Title	Core (C) Title or				-	e and nding			Su	bject			r amm tills	e Lea		<mark>; Outo</mark> inkir				Ski	lls (or) (bloya	Othe abilit	er ski	nsfer Ils re nd pe	eleva	ant
			Option (O)	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	B4	B5	C1	C2	СЗ	C4	C5	C6	D1	D 2	D3	D4	D5	D6	D7	D8
	BIC511	Project	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BIC512	Medical informatics	С	*	*	*	*	*	*	*	*	*	*	*		*		*	*	*		*	*	*	*	*	*	*	*
	<u>BI513</u>	Biocompatiablity and toxicity	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BIC514	Biomedical sensors	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
Fifth Voor (<u>BI515</u>	Biomedical acoustics	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
Year/ Course 1	<u>BIC516</u>	Writing skills	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	<u>BI517</u>	Sugary for engineering	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	<u>BIC518</u>	Neurobiology engineering	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	<u>BIC519</u>	Advanced English language I	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	BIC521	Project	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	BIC522	Medical radiography	С	*	*	*	*	*	*	*	*	*	*	*		*		*	*	*		*		*	*	*	*	*	*
	<u>BI523</u>	Engineering biomedical physiology	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
Fifth Year/	<u>BI524</u>	Catheter and netareisurgy tools	С	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
Course 2	<u>BI525</u>	Advanced medical devices	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*
	<u>BI526</u>	Cardiology	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	<u>BIC527</u>	Hospital engineering	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*		*	*	*	*	*	*
	<u>BI528</u>	Nanomechanics	C	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*		*	*	*	*	*	*	*	*

								C	urricu	ılum S	Skills	Мар																	
		please	e tick in the	e rele	evant	boxe	es wh	ere in	divid	ual Pi	ogra	mme	Learr	ning C	Dutco	mes a	are be	eing a	ssess	ed									
														Progr	amm	e Lea	rning	Outo	ome	s									
Year / Level	Course Code	Course Title	Core (C) Title or				wledg erstai				Su	bject∙	speci	fic sk	ills		Thi	inkir	ng Sk	kills		Skil	ls (d	or) O oloya)the	r ski zy an	lls re nd pe	rable eleva ersor	nt
			Option (O)	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	B4	B5	C1	C2	СЗ	C4	C5	C6	D1	D 2	D3	D4	D5	D6	D7	D8
	<u>BIC529</u>	Advanced English language	C	*	*	*	*	*	*	*	*	*	*	*		*		*	*	*		*		*	*	*	*	*	*
																											<u> </u>		I

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

Study of biotribology aim to gather information about friction, adhesion, lubrication and wear of systems, surface contact area. Friction theories, wear theories, wear in practical. Experimental methods Also The thermal and hydrolytic sensitivities of biological materials limit their applicability in many important synthetic materials applications. lubrication theories, tribology in biological systems and instruments.

1. Teaching Institution	Ministry of Higher Education & Scientific Research
2. University Department/Centre	University of Technology/ Biomedical Engineering Department
3. Course title/code	biotribology/ BME
4. Programme(s) to which it contributes	BM
5. Modes of Attendance offered	Virtual Attendance
6. Semester/Year	II semester/ 4 th year
7. Number of hours tuition (total)	60 hours semester
8. Date of production/revision of this Specification	6/12/2020
9. Aims of the Course	
1. Understand the fundamental mecha	nisms of friction, laws and simple theories.
2. Describe the laws and simple theori phenomena of wear, and theories of	
3. Appreciate the consequences of biomaterials of implants	friction and wear on different types of

10. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Knowledge and Understanding

- A1. Revision the Basic Concepts in biotribology and Study the surface science.
- A2. Apply lubrication methods to human joints
- A3. Apply and analysis of human joints.
- A4. Analyze the artificial joints and their biomaterials.

B. Subject-specific skills

- B1. Explain the different models of friction
- B2. Apply types of friction and materials used in joints.
- B3. Introduce the different human joints.

Teaching and Learning Methods

The teaching method that will be used in this course will be composed of a series of mini lectures interrupted with frequent discussions and brainstorming exercises. Using white board and Data show

Assessment methods

- For the purpose of evaluation is used
- 1. Method of rapid test and snap
- 2. Identify some homework
- 3. Quarterly exams

C. Thinking Skills

- C1. Analyze problems involving friction and surface nature.
- C2. Study the joint types
- C3. Study the types of materials and implants

Teaching and Learning Methods

- 1. Explain the required term
- 2. To discuss ideas and share knowledge
- 3. Methodology and use the text books

Assessment methods

D. General and Transferable Skills (other skills relevant to employability and personal development).

D1. Experimental test in laboratory.

D2. Reports set related to the theoretical objects

		11. Course	Structure		
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessme nt Method
I		2 nd sem	ester		
1	4	Introduction to Bio-Tribology: Friction, Surface Roughness and Finishing, Lubrication ,Synovial Membrane, theories of lubrication	Introduction to Bio- Tribology:,	Explain of theoretical subjects	Quiz. H.W exam and Ex. Reports
2	4	Wear, mechanisms of wear Adhesive, Abrasive, Fatigue, Linear wear, Volumetric wear, Wear testing, Wear rate, Laws of wear, Corrosion,	Wear, mechanisms, , , Corrosion Types	Explain of theoretical subjects with examples	Quiz. H.W exam and Ex. Reports
3	4	The structure, friction and wear of natural joints, types of implants, (cemented and cementless), biomaterials of joint replacements,	The structure, friction and wear of natural joints, materials.	Explain of theoretical subjects with examples	Quiz. H.W exam and Ex. Reports
4	4	Implant geometry, Manufacturing methods and metallurgy, Tribology of metal-on-metal bearings, Effects of material and design on the	Implant geometry, Manufacturing methods and metallurgy Tribology	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
5	4	Metal alloys in joint replacements, stainless steel, cobalt, nickel,	Metal alloys in joint replacements,	Explain and derive the	Quiz. H.W exam and Ex.
6	4	Titanium (Ti) Alloys, Biotribological properties of	Titanium (Ti) Alloys, Biotribological	Explain and derive the	Quiz. H.W exam and Ex.
7	4	Ceramic evolution and internal/surface treatments to use in		Explain and derive the	Quiz. H.W exam and Ex.
8	4	Diamond, bioglass, Bioactive ceramics and glasses as coatings to improve bone bonding,	Diamond, bioglass, Bioactive ceramics and glasses as	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
9	4	Polymer evolution and internal/surface treatments,	Polymer evolution and internal/surface	Explain and derive the	Quiz. H.W exam and Ex.
10	4	Effects of temperature on performance of artificial joints,	Effects of temperature on	Explain and derive the	Quiz. H.W exam and Ex.
11	4	Experimental Wear Studies of Total Joint Replacements, Methods	Experimental Wear Studies of Total Joint	Explain and derive the	Quiz. H.W exam and Ex.
12	4	Design of Artificial Joints: Shoulder joints and its	Design of Artificial Joints	Explain and derive the	Quiz. H.W exam and Ex.
13	4	Wrist joints and its replacements, Finger joint and its replacements	Design of Artificial Joints	Explain and derive the	Quiz. H.W exam and Ex.
14	4	Hip joints and its replacements, Knee joint and its replacements,	Design of Artificial Joints	Explain and derive the	Quiz. H.W exam and Ex.
15	4	Revision	Revision	Explain and derive the	Quiz. H.W exam and Ex.

12. Infrastructure	
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	 J. Paulo Davim, Biotribology, John Wiley & Sons, 2013 JOHN H. DUMBLETON, Tribology of Natural and Artificial Joints, ELSEVI ER, 1981
	Experimental apparatus in biotribology laboratory for perform experimental test
Community-based facilities (include for example, guest Lectures, internship, field studies)	www.elsevier.com/locate/biotri

13. Admissions		
Pre-requisites	Fundamental basic concepts and biomaterial and mechanics.	applications o

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

Basic properties and concepts of fluid and solid mechanics are introduced in static and flow with problems and applied to the analysis of blood flow in the macro and microcirculation, and to other physiological flows. The viscosity, surface tension capillary action and its applications. Analysis of mathematical models is combined with discussions of physiological mechanisms. Energy equations, Bernolles equation, viscous flow analyses and pulsate flow.

1. Teaching Institution	Ministry of Higher Education & Scientific Research	
2. University Department/Centre	University of Technology/ Biomedical Engineering Department	
3. Course title/code	Bio-fluid mechanics/ BME	
4. Programme(s) to which it contributes	general	
5. Modes of Attendance offered	Virtual Attendance	
6. Semester/Year	II semester /2 nd year	
7. Number of hours tuition (total)	60 hours semester	
8. Date of production/revision of this Specification	6/12/2020	
9. Aims of the Course		
1. understand the role of physiological fluid mechanics in Biomedical Engineering		
2. Introduce fluid concepts essential to the understanding of biofluid mechanics and physiological fluid mechanics		
3. Apply basic concepts in fluid mechanics to clinical fluid dynamic measurements		

10. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Knowledge and Understanding

A1. Revisit Basic Concepts in Fluid Mechanics and Study the kinematics of Fluid Flow

A2. Apply hydrostatics equations to clinical applications

A3. Apply conservation relations to fluid flow and Difference between viscid and inviscid flow

A4. Analyze the flow properties of blood, and blood vessel structure

B. Subject-specific skills

B1. Explain the different models of Biofluid and blood flow

B2. Apply Poiseuilli's Law to the study of Blood Flow

B3. Introduce the different classes of Non-Newtonian fluids

B4. Study the operation of heart valves and its relation to blood flow in arteries

Teaching and Learning Methods

The teaching method that will be used in this course will be composed of a series of mini lectures interrupted with frequent discussions and brainstorming exercises. Using white board and virtual meeting.

Assessment methods

For the purpose of evaluation is used

- 1. Method of rapid test and snap
- 2. Identify some homework
- 3. Quarterly exams

C. Thinking Skills

C1. Analyze problems involving circulatory biofluid mechanics and blood rheology

- C2. Study the flow properties of blood and their relation to blood vessel structure
- C3. Apply different mathematical models to describe the behavior of viscous fluids flow

Teaching and Learning Methods

- 1. Explain the required term
- 2. To discuss ideas and share knowledge
- 3. Methodology and use the text books

Assessment methods

D. General and Transferable Skills (other skills relevant to employability and personal development).

D1. Experimental test in laboratory.

 $D2. \ Reports \ set \ related \ to \ the \ theoretical \ objects$

			Unit/Modul	Teaching	Assess
Week	Hours	ILOs	e or	Method	ment
				Ivictilou	
			Topic		Met
			Title		hod
			2 nd semester		1
1	4	- Introduction to Physiological Fluid Mechanics	Introduction &Basic concepts	Explain of theoretical subjects	Quiz. H.W exam and Ex. Reports
2	4	Kinematics of Fluid Flow, Hydrostatics - Conservation Relations	Fluid kinematics	Explain of theoretical subjects with examples	Quiz. H.W exam and Ex. Reports
3	4	Viscous Flow	Viscous Flow	Explain of theoretical subjects with examples	Quiz. H.W exam and Ex. Reports
4	4	- Unsteady Flow	Unsteady Flow	Explain and derive the related eqs.	Quiz. H.W exan and Ex. Reports
5	4	- Analysis of Total Peripheral Flow	Peripheral Flow	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
6	4	- Circulatory Biofluid Mechanics	Biofluid Circulatory	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
7	4	- Flow Properties of Blood	Blood flow	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
8	4	-Clinical Fluid Dynamic Measurements	Measurements	Explain and derive the related eqs.	Quiz. H.W exan and Ex. Reports
9	4	- Blood Vessel Structure	Blood Vessel Structure	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
10	4	- Applications of Poiseuilli's Law	Poiseuilli's Law	Explain and derive the related eqs	Quiz. H.W exan and Ex. Reports
11	4	Introduction to Non- Newtonian Fluids	Non-Newtonian Fluids	Explain and derive the related eqs	Quiz. H.W exan and Ex. Reports
12	4	- Operation of Heart Valves	Heart Valves	Explain and derive the related eqs	Quiz. H.W exan and Ex. Reports
13	4	- Shear Stress on Vessel Wall	Vessel Wall	Explain and derive the related eqs	Quiz. H.W exam and Ex. Reports
14	4	- Blood Vessel Bifurcation	- Blood Vessel Bifurcation	Explain and derive the related eqs	Quiz. H.W exam and Ex. Reports

12. Infrastructure	
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	 Lighthill, J. "Physiological Fluid Mechanics." Springer-Verlag. Hellums, J. and Brown, C. "Cardiovascular Fluid Dynamics." University Press Fung, Y.C. (1996). "Biomechanics: Properties of Living Tissues." Springer-Verlag Fung, Y.C. (1993). "First Course in Continuum Mechanics of Physical and Biological Engineers and Scientists." 3rd Ed. Prentice-Hall.
Special requirements (include for example workshops, periodicals, IT software, websites)	Experimental apparatus in fluid mechanics laboratory for perform experimental test
Community-based facilities (include for example, guest Lectures, internship, field studies)	

ſ

13. Admissions	
	Fundamental basic concepts and applications of physics and Engineering mathematics.
Minimum number of students	95
Maximum number of students	101

_

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	Ministry of Higher Education & Scientific Research
2. University Department/Centre	Technology Department
3. Course title/code	Medical physics
4. Programme(s) to which it contributes	Google meet + Canvas+ Google classroom
5. Modes of Attendance offered	Theoretical material
6. Semester/Year	2022/2021 - first semester
7. Number of tuition hours (total)	30 Hours In Year
8. Date of production/revision of this specification	2021/7/10
9. Aims of the Course	

Introducing the student to the subject of medical physics and the necessity of learning it because it is an essential part closely related to the physics of parts

The body and its importance in preparing for how to design medical devices and knowing their physical principle or parts to be implanted inside the body

And how to deal with it in a physical way, which helps in the success of work in a way that suits the physical nature of the human body

10. Learning Outcomes, Teaching, Learning and Assessment Methods

A- Knowledge and Understanding

A1: Cognitive goals

A1: Cognitive objectives

A2 :At the end of the semester, the student should be able to define

A3: The physical principle of the work of the parts of the body

A4:The physical principle of operation of medical devices

Subject-specific skills

Course specific objectives

1-The learner should have the ability to analyze and interpret issues related to medical physics

2-The ability to determine the physical characteristics of all parts of the human being3-The ability to self-evaluation and independent in the field of medical physics and draw lessons for the future through observation

Logical linking, abstraction, judgment about knowledge, working to solve problems, and choosing the best and most appropriate solutions

4-The ability to adopt appropriate physical methods to design new medical devices 5- Inventing new treatments for problems related to the physical principle of medical devices

Teaching and Learning Methods

1-Theoretical lectures, brainstorming

2-Group discussion and dialogue

3- Comparison between applied reality and theoretical study and examples about the experiences of peoples and countries at the present and past times

Assessment Methods

1-Regular and quarterly exams

2-duties

3-Short reports and research

4 short exams

C- Thinking Skills

C1: Consolidate these rights and freedoms for the university student and inform him that these rights are not absolute and are exercised without restrictions but hey

Constrained by the rights of others and not to be violated, in addition to his duty towards the society in order to grow in a free and complete growth that suits him achieve that

rights. Therefore, every right is accompanied by an obligation or a duty to implement .it

A:2: To establish for the university student that enjoying the exercise of rights and :freedoms is under the national legislation that

control and regulate

Practicing these rights in order to be in harmony with the culture of human rights, promoting them with realistic examples and spreading a spirit of hope and optimism with a future

brightening our country, moving away from sectarian and ethnic characterization and its repercussions, promoting the spirit of citizenship and spreading the values of tolerance

and discard all

Forms of racial discrimination and division and building a state of law magnifies human beings

Teaching and Learning Methods

1. Employing the faculty's ability and experience in communicating the scientific material to the student

2- Motivating the student to discuss, debate and draw conclusions

Assessment Methods

Periodic and final exams (documented), oral questions during lectures

Reports and Research

D- General and Transferable Skills (other skills relevant to employability and personal development)

- D1:
- D2:
- D3:
- D4:
- D5:
- D6:

11. Course Structure

Week	Hours	ILOs	Unit/Module or Topic title	Teaching Method	Assessment Method
1	2	Understanding the student	Introduction of medical physics	Theoretic	Lecture and discuss and dialogue and examples used to achieve Objectives
2	2		Forces On and In the Body	Theoretic	
3	2		Energy, work, and power of Body	Theoretic	
4	2		Pressure	Theoretic	
5	2		Physics of the lung and Breathing	Theoretic	
6	2		Physics of Cardiovascular System	Theoretic	
7	2		Physics of eye	Theoretic	
8	2		Physics of vision	Theoretic	
9	2		Physics of diagnostic X- Rays	Theoretic	
10	2		Physics of nuclear medicine	Theoretic	
11	2		Friction force	Theoretic	
12	2		Physics of laser	Theoretic	
13	2		Skelton	Theoretic	

14	2	viscosity	Theoretic	
15	2	Electricity	Theoretic	

12· Infrastructure	
Required readings: - Core Texts - Course Materials - Other	A b h f li d h i i A branc h o f appli e d p hysics concerning the application of physics to medicine or, in other words The app p y q lication of p h ysics techni ques to the human health Marco Silari CERN
Special requirements (include for example workshops, periodicals, IT software, websites)	There is no
Community-based facilities (include for example, guest lectures, internship, field studies)	There is no

13. Admissions	
Pre-requisites	success from middle school
Minimum number of students	There is no
Maximum number of students	There is no

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	Ministry of Higher Education & Scientific Research	
2. University Department/Centre	University of Technology/ Biomedical Engineering Department	
3. Course title/code	Numerical Analysis / BME	
4. Programme(s) to which it contributes	BM & MI	
5. Modes of Attendance offered	Virtual Attendance	
6. Semester/Year	II semester /3 rd year	
7. Number of tuition hours (total)	45 hours semester	
8. Date of production/revision of this specification	6/12/2020	
9. Aims of the Course		
1. Enable students to understand, develop, analyze approximate solutions to algebraic and transcendental engineering problems		
2. Enable students to understand the concepts of error and approximate solutions in engineering application		
3. Apply the numerical solution to solve differential equations, derivatives, integral, and hard problems.		
4. Code various numerical methods in a modern computer language using Matlab, for example.		

10. Learning Outcomes, Teaching, Learning and Assessment Methods	
 A- Knowledge and Understanding Al: Understand the basic error analysis techniques. A2: Understand the basic methods for root approximation. A3: Understand the basic methods for solving linear systems. A4: Understand the basic numerical techniques for approximating differentiation. A5: Understand the basic numerical techniques for approximating integration A6: Understand the basic numerical techniques for interpolation B- Subject-specific skills B1: Compute the absolute, relative, rounding, truncation, and propagation errors. B2: Solve an algebraic or transcendental equation using an appropriate numerical method. B3: Solve differential equations using an appropriate numerical method. B4: Calculate a definite integral using an appropriate numerical method. B5: Solve real world problems numerically using Matlab. 	
Teaching and Learning Methods	
 Explain the required term To discuss ideas and share knowledge Methodology and use the text books 	
Assessment Methods	
For the purpose of evaluation is used 1. Method of rapid test and snap 2. Identify some homework 3. Quarterly exams	
 C- Thinking Skills C1: Analyze and compare the significance of the different techniques for root approximation. C2: Analyze and compare the different techniques for solving linear systems C3: analyze and compare the different techniques for numerical differentiation. C4: analyze and compare the different techniques for numerical integration. C5: Prove results for numerical root finding methods. C6: Understand the basic numerical techniques for interpolation. 	
Teaching and Learning Methods	
1. The teaching method that will be used in this course will be composed of a series of mini lectures interrupted with frequent discussions and brainstorming exercises. Using white board and virtual meeting.	
Assessment Methods	
For the purpose of evaluation is used 1. Method of rapid test and snap 2. Identify some homework 3. Quarterly exams	

D- General and Transferable Skills (other skills relevant to employability and personal development)

Dl: Perform an error analysis for a given numerical method

D2: Discuss and work in a group in order to solve numerical approximation problems.

D3: Discuss and work in a group in order to program numerical solutions using Matlab

D4: Demonstrate developed solutions using programming language.

11. Course Structure					
Week	Hours	Iours ILOs Unit/Module or Topic title		Teaching Method	Assessment Method
1	3	Absolute & relative error	Error analysis	Lectures and discussions	Quizzes, H.W., and exams
2	3	f(X)=0: Iteration for Solving roots and H		Quizzes, H.W., and exams	
3	3	Secant, Newton-Raphson and its modified Methods	Finding of roots	Lectures and discussions	Quizzes, H.W., and exams
4	3	Lagrange interpolation, and Newton polynomial	Interpolation	Lectures and discussions	Quizzes, H.W., and exams
5	3	Curve Fitting: Least Squares method	Curve Fitting	Lectures and discussions	Quizzes, H.W., and exams
6	3	Least Squares method in Multiple Linear Regression	Curve Fitting	Lectures and discussions	Quizzes, H.W., and exams
7	3	Numerical Differentiation: Approximating the Derivative, Numerical Differentiation Formulas	Numerical Differentiation	Lectures and discussions	Quizzes, H.W., and exams
8	3	Numerical Integration: Introduction, Composite	Numerical	Lectures and	Quizzes, H.W., and

		Trapezoidal and Simpson's Rule	Integration	discussions	exams
9	3	Modified Trapezoidal and modified Simpson's Rule	Numerical Integration	Lectures and discussions	Quizzes, H.W., and exams
10	3	Solution of Linear Systems AX=B: Introduction, Properties of Vectors and Matrices	Linear System Solutions	Lectures Quizzes, and H.W., and discussions exams	
11	3	Systems, Gaussian Elimination Solutions and H.V.		Quizzes, H.W., and exams	
12	3	Iterative Methods for Linear System (Jacobi & Gauss Seidel).	em (Jacobi & Gauss Solutions and H.W.,		Quizzes, H.W., and exams
13	3	Introduction to numerical solution of Diff. Eqs., Euler & modified Euler methods	Numerical solution of Diff. Eqs.	Lectures and discussions	Quizzes, H.W., and exams
14	3	The Runge-Kutta Method for ordinary 1 st order Diff. Eqs.	Numerical solution of Diff. Eqs.	Lectures and discussions	Quizzes, H.W., and exams
15	3	Second Order Diff. Eqs: Euler & Runge-Kutta methods for Second Order	Numerical solution of Diff. Eqs.	Lectures and discussions	Quizzes, H.W., and exams

12· Infrastructure	
Required readings: - Core Texts - Course Materials - Other	Advanced Engineering Mathematics By: E. Kreyszig Numerical Methods for Engineers, Education, Graw Hill 2015, by Steven C. Chapra and Raymond P. Cale
Special requirements (include for example workshops, periodicals, IT software, websites)	Matlab tutorials and assigned reading and audio-visual lectures.
Community-based facilities (include for example, guest lectures, internship, field studies)	

13. Admissions	
Pre-requisites	Engineering mathematics and calculus
Minimum number of students	
Maximum number of students	

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

Design synthesis, fundamental principles of standard design elements, mechanical and fluid power elements, formal mechanical design drawing requirements, component specification and optimization.

1. Teaching Institution	Ministry of Higher Education & Scientific Research
2. University Department/Centre	University of Technology /Biomedical Engineering Department
3. Course title/code	Mechanical Design (ME.G. 144)
4. Programme (s) to which it contributes	(Biomechanical Branch)
5. Modes of Attendance offered	Google meet + Google classroom full time + online
6. Semester/Year	Third year / Second term – 2020/2021
7. Number of tuition hours (total)	2 theoretical hours + 2 Laboratory hours/ week (total number of hours 60 hours)
8. Date of production/revision of this specification	5/7/2021
9. Aims of the Course	

The main goals of this course are:

- 1- To understand the design process and to apply the scientific principles and techniques for analyze and solving open-ended design problems of various mechanical components commonly, such as screws, bearings, gears, etc.
- 2- Apply modeling and design principles to the analysis of an engineering problem.
- 3- To evaluate the student's ability to work by teams.
- 4- To grade the student's ability to plan, organize and distribute tasks. Student participation on the design project will be graded according to the fulfillment of the goals above .
- 5- Each student must have a thorough understanding of the design concepts.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

A- Knowledge and Understanding

Students Upon successful completion of the course, the student will be able:

- A1: The student is expected to analyze mechanical systems and select the proper machine elements (bearings, gears, pulleys, screws,...) from commercial catalogs for a required application .
- A2: The student is expected to be able to analyze proposed design solutions and suggest modifications and improvements .
- A3: The student should be able to execute original designs of machine elements .

B- Subject-specific skills

At the end of the semester, the student should be able to define:

- B1: The student should be able to produce design sketches and integrate the designed or selected elements into a working mechanical system.
- B2: The student will be able to implement design procedures to perform complete design projects individually and in teams.
- B3: The student is expected to communicate the implemented design ideas by performing production drawings, writing technical reports and making oral presentations.

Teaching and Learning Methods

Prepared lectures, Date show, direct explanations on blackboard and bio-medical related video you-tubes.

Assessment Methods

Assessment:

Coursework and quizzes exams (2 written) and homework	10%
Mid Examinations (2hr written exams)	15%
Student Attendances	5%
Coursework reports and Labaratory quizzes exams	25%
Final Examination (3hr written exam)	50%

C- Thinking Skills

- C1: A1: Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.
- C2: Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.
- C3: Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Methods

- 1-Employing the faculty's ability and experience in communicating the scientific material to the student
- 2- Encouraging the student to discuss, debate and draw conclusions

Assessment Methods

Periodic and final exams (oral questions during lectures, reports and research)

D- General and Transferable Skills (other skills relevant to employability and personal development)

- D1: The learner's use of information in real life situations in medical institutions after graduation
- D2: Using modern knowledge to develop examination devices within health institutions
- D3: Using modern knowledge in preparing national standards for the acceptability of medical devices and biological materials, methods of examination and biological acceptability
- D4: Improving writing skills, dialogue skills, and problem solving, using teamwork in all aspects of life.

11. Course S	11. Course Structure				
Week	Hours	ILOs	Unit/Module or Topic title	Teaching Method	Assessment Method
(1-2)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Review in Strength of Materials	Theoretical Lecture	As mentioned above
(3-4)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Theories of Failure	Theoretical Lecture	As mentioned above
(5)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Design Under Fluctuating Stresses	Theoretical Lecture	As mentioned above
(6-7)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Design of Shafts and Shaft Components	Theoretical Lecture	As mentioned above
(8-9)	2Hrs Theory+ 2Hrs. ANSYS	Student understanding of the lecture and achieving	Design of Power Screws	Theoretical Lecture	As mentioned above

	Laboratory	its objective			
(10-11)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Design of flat Belts	Theoretical Lecture	As mentioned above
(12-13)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Design of Spur and Helical Gears	Theoretical Lecture	As mentioned above
(14-15)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Application of Computer Programs in Design of Systems	Theoretical Lecture	As mentioned above

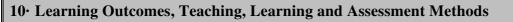
12· Infrastructure	
Required readings: - Core Texts	Recommended Text book
- Course Materials - Other	1- Mechanical Engineering Design, by Joseph E. Shigley & Charles R. Mischke, (McGraw-Hill), 8th edition.
	Reference books
	1 -Machine Design: An Integrated Approach, Robert L. Norton, (Prentice Hall)
	2 -Machine Design Fundamentals (A practical approach) U. Hindhede, J.R. Zimmerman, R.B. Hopkins, R.J. Erisman, W.C. Hull, J.D. Lang, (Prentice Hall)
	3 -Kinematics, Dynamics, and Design of Machinery, Kenneth J. Waldron and Gary L. Kinzer (Wiley)
	4- Fundamentals of Machine Component Design by R.C. Juvinall and K.M. Marshek, 4rd edition, John Wiley & Sons. ISBN: 13 978-0-471-66177-1
Special requirements (include for example workshops, periodicals, IT software, websites)	International standards and standards, related YouTube
Community-based facilities (include for example, guest lectures, internship,	Nothing

field studies)

13· Admissions		
Pre-requisites	Engineering and industrial drawing and AutoCAD drawing program, Engineering Mechanics I & II and Strength of Materials I &II	
Minimum number of students	20	
Maximum number of students	50	

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION


Manufacturing of Medical devices is currently a rapidly growing industry over the past decades. It can be viewed as the application of manufacturing technology to medical devices manufacturing, of which the development processes are often tedious and multidisciplinary, involving advanced 3D modelling, surgical machining, pharmaceutical production and biomechanics.

This course aims to provide the essential knowledge in the medical devices manufacturing development (e.g., material properties, fabrication processes and design techniques for different applications) in order to provide ways to speed up the product development cycle. This course is multidisciplinary and covers the principles in mechanical, chemical, biological, and physiological aspects. Students can learn the techniques to apply the acquired knowledge for particular applications they are interested. Further, this course emphasizes also on inspiring students to discover and convert newly reported technologies into products/services for the future development of medical devices applications.

1. Teaching Institution	Ministry of Higher Education & Scientific Research
2. University Department/Centre	University of Technology /Biomedical Engineering Department
3. Course title/code	Manufacturing of Medical devices (BME 8103)
4. Programme (s) to which it contributes	(Biomechanical & Medical Instrumentation Branches)
5. Modes of Attendance offered	Google meet + Canvas+ Google classroom full time + online
6. Semester/Year	Fourth year / Second term – 2020/2021
7. Number of tuition hours (total)	2 theoretical hours + 1 theoretical discussion hour/ week (total number of hours 45 hours)
8. Date of production/revision of this specification	5/7/2021
9. Aims of the Course	

The main goals of this course are:

- 1-To study and characterize the Manufacturing of Medical devices methods for use in the human body to measure, restore, and improve physical functions and enhance survival and quality of life.
- 2- To study and characterize the assisting in regenerating, repairing, supporting and replacing defect tissues and esthetic parts.

A- Knowledge and Understanding

- Students Upon successful completion of the course, the student will be able:
- A1: Describe the mechanical and biochemical properties of bio-related materials, as well as their major applications as medical devices or other bio-products.
- A2: Explain the principles of the fabrication/manufacturing techniques for existing biomedical devices; and identify the manufacturing processes for the biomedical applications
- A3: Compare the pros and cons of different bio-materials and their corresponding manufacturing processes.
- A4: Select the appropriate bio-related materials and manufacturing processes for specific applications; and apply basic design principles to specific bio-related products.

B- Subject-specific skills

At the end of the semester, the student should be able to define:

- B1: Discover and elaborate newly developed technologies related to biomedical manufacturing; and propose a selected technology on how it can be converted to the corresponding biomedical product/service.
- B2: Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.
- B3: Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.
- B4: Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Methods

Prepared lectures, Date show, direct explanations on blackboard and bio-medical related video you-tubes.

Assessment Methods

Assessment:

Coursework and quizzes exams (2 written) and homework10%Mid Examinations (2hr written exams)15%

Student Attendances	5%
Coursework reports and quizzes exams	10%
Final Examination (3hr written exam)	40%

C- Thinking Skills

- C1: A1: Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.
- C2: Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.
- C3: Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Methods

- 1-Employing the faculty's ability and experience in communicating the scientific material to the student
- 2- Encouraging the student to discuss, debate and draw conclusions

Assessment Methods

Periodic and final exams (oral questions during lectures, reports and research)

D- General and Transferable Skills (other skills relevant to employability and personal development)

- D1: The learner's use of information in real life situations in medical institutions after graduation
- D2: Using modern knowledge to develop examination devices within health institutions
- D3: Using modern knowledge in preparing national standards for the acceptability of medical devices and biological materials, methods of examination and biological acceptability
- D4: Improving writing skills, dialogue skills, and problem solving, using teamwork in all aspects of life.

11. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic title	Teaching Method	Assessment Method
(1-2)	2Hrs Theory+ 1Hr. Theory Discussion	Student understanding of the lecture and achieving its objective	LECTURES 1-2 Manufacturing of Medical Devices	Theoretical Lecture	As mentioned above

(3-4)	2Hrs Theory+ 1Hr. Theory Discussion	Student understanding of the lecture and achieving its objective	LECTURES 3-4 Additive manufacturing and 3D Printing	Theoretical Lecture	As mentioned above
(5)	2Hrs Theory+ 1Hr. Theory Discussion	Student understanding of the lecture and achieving its objective	LECTURES 1-4 Manufacturing of Medical Devices - Review	Theoretical Lecture	As mentioned above
(6-7)	2Hrs Theory+ 1Hr. Theory Discussion	Student understanding of the lecture and achieving its objective	LECTURES 5-6 Ceramics and Glass manufacturing	Theoretical Lecture	As mentioned above
(8-9)	2Hrs Theory+ 1Hr. Theory Discussion	Student understanding of the lecture and achieving its objective	LECTURES 7-8 Micro and Nano Materials Manufacturing Techniques (1)	Theoretical Lecture	As mentioned above
(10-11)	2Hrs Theory+ 1Hr. Theory Discussion	Student understanding of the lecture and achieving its objective	LECTURES 9-10 Micro and Nano Materials Manufacturing Techniques (2)	Theoretical Lecture	As mentioned above
(12-13)	2Hrs Theory+ 1Hr. Theory Discussion	Student understanding of the lecture and achieving its objective	LECTURES 11-12 Powder metallurgy	Theoretical Lecture	As mentioned above
(14)	2Hrs Theory+ 1Hr. Theory Discussion	Student understanding of the lecture and achieving its objective	LECTURES 13-14 Emerging and Future manufacturing	Theoretical Lecture	As mentioned above
(15)	2Hrs Theory+ 1Hr. Theory Discussion	Student understanding of the lecture and achieving its objective	LECTURES 15 Biomanufacturing	Theoretical Lecture	As mentioned above

12· Infrastructure	
Required readings: - Core Texts - Course Materials - Other	Recommended Text book 1- Lam, R. H. W., and Chen, W. (2019). Biomedical Devices: Materials, Design and Manufacturing, New York: Springer
	Publishing. Reference books
	1 .Kucklick, T. R. (2012). The Medical Device R&D Handbook, Florida: CRC Press.
	2 .Migonney, V. (2014). Biomaterials, England: John Wiley & Sons, Inc.
	3 .Masataka, Y. (2010). System Design Optimization for Product Manufacturing, London: Springer Publishing.
Special requirements (include for example workshops, periodicals, IT software, websites)	International standards and standards, related YouTube
Community-based facilities (include for example, guest	Nothing
lectures, internship, field studies)	

13· Admissions		
Pre-requisites	Biomaterials, Engineering Mechanics I & II and Strength of Materials I &II	
Minimum number of students	40	
Maximum number of students	100	

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	Ministry of Higher Education & Scientific Research
2. University Department/Centre	Technology University/ Biomedical engineering Department.
3. Course title/code	Nutrition
4. Programme(s) to which it contributes	Joint course
5. Modes of Attendance offered	Full-time + electronic (+ Canvas + Google meet+ Google Classroom).
6. Semester/Year	2021/2020
7. Number of tuition hours (total)	My theory: 2 hours/week total school hours: 30 hours/ year
8. Date of production/revision of this specification	3/7/2021
9. Aims of the Course	

University student definition: 1 - A comprehensive definition of nutrition starting with its importance and negative effects in the event of neglect.2 Definition of large nutrients, types, benefits and harms. 3. Definition of micronutrients, types, benefits and harms. 4. Identify standard methods and guidelines for nutrition. 5. Learn how to balance the body's energy and its relationship with body weight and how to resist different diseases using the right feeding methods.

10. Learning Outcomes, Teaching, Learning and Assessment Methods
A- Knowledge and Understanding: The student should be able at the end of the
semester to identify
A1: What is nutrition and what its benefits and very serious harms are in the event of a defect in that substance.
A2: Develop the necessary skills of the student in identifying the types and branches
of nutrition and applying them in daily life to ensure that the individual is healthy.
A3: Emphasize the importance of nutrition and make it a comprehensive educational
and health approach that a person depends on during his or her life.
B- Subject-specific skills
B1: The learner should have the ability to analyze and interpret nutrition in all its aspects.
B2: The ability to determine what nutrition is within the living range that a person
should enjoy.
B3: The ability to evaluate nutrient types, knows their harms and benefits, and
emphasize a person's cognitive and health aspect.
Teaching and Learning Methods
1- Theoretical Lectures.
2 - Group Discussion and Dialogue.
3 - Comparison between applied reality, theoretical study and examples of realism related to
the content of each nutrition topic.
Assessment Methods
1- Periodic and quarterly examinations 2 - Duties 3 - Reports and Short Research 4 - Short Tests
C- Thinking Skills
C1: Instilling nutrition in the mind of each student because of its importance in his or her
scientific and practical life.
C2: Establishing among the university student that enjoy the practice of all sports curricula in
accordance with nutrition and balancing energy and body weight and body resistance from various diseases.
Teaching and Learning Methods
1. Employing the ability of teaching and his experience in delivering the scientific
material to the student.
2 - Stimulate the student to discuss, dialogue and conclusion.
Assessment Methods
1 Deviadio and final examinations (decumented) 2 Qual exections during lasters 2
1- Periodic and final examinations (documented). 2- Oral questions during lectures. 3- reports and research

D- General and Transferable Skills (other skills relevant to employability and personal development)

- D1: The learner's use of information and its application in real life situations
- D2: The use of knowledge in the implementation of nutrition skills to maintain human health.
- D3: Improving nutrition information in order to properly apply it to maintain the healthy lifestyle of the organism

11· Co	11. Course Structure				
Week	Hours	ILOs	Unit/Module or Topic title	Teaching Method	Assessment Method
1	2	The student understood the lecture	Introduction for nutrition	Theoretical lecture	Discussion, dialogue and examples used to achieve goals and homework
1	2	The student understood the lecture	Lecture on micronutrients, their types and benefits	Theoretical lecture	Discussion, dialogue and examples used to achieve goals and homework
1	2	The student understood the lecture	Lecture on macronutrients, their types and benefits	Theoretical lecture	Discussion, dialogue and examples used to achieve goals and homework
1	2	The student understood the lecture	Lecture on standard nutrition and guiding methods	Theoretical lecture	Discussion, dialogue and examples used to achieve goals and homework
1	2	The student understood the lecture	Lecture on body balance and body weight	Theoretical lecture	Discussion, dialogue and examples used to achieve goals and homework

12· Infrastructure	
Required readings: - Core Texts - Course Materials - Other	 1- The Best Fitness and Nutrition Books of 2019, Noma Nazish 2- Human Nutrition - 2020 Edition. Marie Kainoa Fialkowski Revilla, University of Hawai'i, Mānoa
	Alan Titchenal, University of Hawaiʻi, Mānoa Jennifer Draper, University of Hawaiʻi, Mānoa
Special requirements (include for example workshops, periodicals, IT software, websites)	Nothing
Community-based facilities (include for example, guest lectures, internship, field studies)	Nothing

13. Admissions	
Pre-requisites	Success from the preparatory stage
Minimum number of students	There's no selection.
Maximum number of students	There's no selection.

HIGHER EDUCATION PERFORMANCE REVIEW: PERFORMANCE REVIEW

COURSE SPECIFICATION

Biomaterials will concentrate on fundamental principles in biomedical engineering, material science, and chemistry. This course will examine the structure and properties of hard materials (ceramics, metals) and soft materials (polymers, hydrogels).

1. Teaching Institution	Ministry of Higher Education & Scientific Research			
2. University Department/Centre	University of Technology			
3. Course title/code	Design and application of biomaterials			
4. Programme(s) to which it contributes	Biomedical Engineering			
5. Modes of Attendance offered	Course			
6. Semester/Year	2 nd / 3ed level			
7. Number of tuition hours (total)	4			
8. Date of production/revision of this specification	6/7/2021			
9. Aims of the Course	9. Aims of the Course			
1) Development of global perspective of interdisciplinary issues (biology, materials science, chemistry, and engineering) involved in biomaterials.				
2) Learn how to design, synthesize, evaluate, and analyze biomaterials.				
3) Critical thinking and analysis.				
4) Communication of ideas; communication to coordinate work				
10. Learning Outcomes, Teaching, Learning and Assessment Methods				
A- Knowledge and Understanding A1: apply knowledge of mathematics, science and engineering. A2: Design and conduct experiments				

A3:Design a system, component, or process to meet desired needs within realistic constraints.

A4:function on multidisc nary teams A5: identify, formulates, and solve engineering problems.

B- Subject-specific skills

B1: Biomaterials Selection

B2: Solve structural problems in biomaterials

B3: Apply knowledge in real case studies

Teaching and Learning Methods

Theory, Discussions, Exams, Seminars, Case studies

Assessment Methods

C- Thinking Skills

C1: interactive study C2:Tem work C3: Make decisions C4: Ability to solve problems related to biomaterials C5: C6:

Teaching and Learning Methods

1.

Assessment Methods

Seminars, Life discussions

D- General and Transferable Sl personal development)	kills (other skills relevant to employability and
D1:	
D2:	
D3:	
D4:	
D5:	
D6:	

11. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic title	Teaching Method	Assessment Method
1	2		Importance of biomaterials	Theory	Seminars
2	2		General Classes and Structure of Biomaterials	Theory	Life discussions
3	2		Physical properties of Biomaterials	Theory	
4	2		Physical properties of Biomaterials	Theory	
5	2		Mechanical properties of Biomaterials	Theory	
6	2		Mechanical properties of Biomaterials	Theory	
7	2		Biomaterial Processing	Theory	
8	2		Surface Properties of Biomaterials	Theory	
9	2		Protein Interactions with Biomaterials	Theory	
10	2		Cell Interactions with Biomaterials	Theory	
11	2		Biomaterial Implantation and Acute Inflammation	Theory	
12	2		Wound Healing in the Presence of Biomaterials	Theory	

13	2	.Immune Response to Biomaterials	Theory	
14	2	Biomaterials corrosion and degradation	Theory	
15	2	Biomaterials corrosion and degradation	Theory	

12· Infrastructure	
Required readings: - Core Texts - Course Materials - Other	 Biomaterials: The Intersection of Biology and Materials Science, Temenoff and Mikos Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons. Biomaterials Science: An Introduction to Materials in Medicine, Academic Press, 2004, USA Joyce Y. Wong Joseph D.Bronzino "Biomaterials," CRC Press, 2007.
Special requirements (include for example workshops, periodicals, IT software, websites)	Videos, seminars
Community-based facilities (include for example, guest lectures, internship, field studies)	Field studies

13. Admissions	
Pre-requisites	Materials science
Minimum number of students	33
Maximum number of students	34

HIGHER EDUCATION PERFORMANCE REVIEW: PERFORMANCE REVIEW

COURSE SPECIFICATION

Biomaterials will concentrate on fundamental principles in biomedical engineering, material science, and chemistry. This course will examine the structure and properties of hard materials (ceramics, metals) and soft materials.

1. Teaching Institution	Ministry of Higher Education & Scientific Research				
2. University Department/Centre	University of Technology				
3. Course title/code	Biomaterials and biocompatibility				
4. Programme(s) to which it contributes	Biomedical Engineering				
5. Modes of Attendance offered	Course				
6. Semester/Year	$2^{nd}/2^{nd}$ level				
7. Number of tuition hours (total)	4				
8. Date of production/revision of this specification	6/7/2021				
9. Aims of the Course					
1) Development of global perspective of interdisciplinary issues (biology, materials science, chemistry, and engineering) involved in biomaterials.					
2) Learn how to design, synthesize, evaluate, and analyze biomaterials.					
3) Critical thinking and analysis.					
4) Communication of ideas; communication to coordinate work					
10. Learning Outcomes, Teaching, Learning and Assessment Methods					
A- Knowledge and Understanding A1: apply knowledge of mathematics, science and engineering. A2: Design and conduct experiments.					

A2: Design and conduct experiments.

A3:Design a system, component, or process to meet desired needs within realistic constraints.

A4:function on multidisc nary teams A5: identify, formulates, and solve engineering problems.

B- Subject-specific skills

B1: Biomaterials Selection

B2: Solve structural problems in biomaterials

B3: Apply knowledge in real case studies

Teaching and Learning Methods

Theory, Discussions, Exams, Seminars, Case studies

Assessment Methods

C- Thinking Skills

C1: interactive study C2:Tem work C3: Make decisions C4: Ability to solve problems related to biomaterials C5: C6:

Teaching and Learning Methods

1.

Assessment Methods

Seminars, Life discussions

D- General and Transferable Sl personal development)	kills (other skills relevant to employability and
D1:	
D2:	
D3:	
D4:	
D5:	
D6:	

11. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic title	Teaching Method	Assessment Method
1	4		Importance of biomaterials	Theory+ Exp.	Seminars
2	4		General Classes and Structure of Biomaterials	Theory+ Exp.	Life discussions
3	4		Physical properties of Biomaterials	Theory+ Exp.	
4	4		Physical properties of Biomaterials	Theory+ Exp.	
5	4		Mechanical properties of Biomaterials	Theory+ Exp.	
6	4		Mechanical properties of Biomaterials	Theory+ Exp.	
7	4		Biomaterial Processing	Theory+ Exp.	
8	4		Surface Properties of Biomaterials	Theory+ Exp.	
9	4		Protein Interactions with Biomaterials	Theory+ Exp.	
10	4		Cell Interactions with Biomaterials	Theory+ Exp.	
11	4		Biomaterial Implantation and Acute Inflammation	Theory+ Exp.	
12	4		Wound Healing in the Presence of Biomaterials	Theory+ Exp.	

13	4	.Immune Response to Biomaterials	Theory+ Exp.
14	4	Biomaterials corrosion and degradation	Theory+ Exp.
15	4	Biomaterials corrosion and degradation	Theory+ Exp.

12· Infrastructure	
Required readings: - Core Texts - Course Materials - Other	 Biomaterials: The Intersection of Biology and Materials Science, Temenoff and Mikos Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons. Biomaterials Science: An Introduction to Materials in Medicine, Academic Press, 2004, USA Joyce Y. Wong Joseph D.Bronzino "Biomaterials," CRC Press, 2007.
Special requirements (include for example workshops, periodicals, IT software, websites)	Videos, seminars
Community-based facilities (include for example, guest lectures, internship, field studies)	Field studies

13. Admissions	
Pre-requisites	Materials science
Minimum number of students	34
Maximum number of students	68

HIGHER EDUCATION PERFORMANCE REVIEW: PERFORMANCE REVIEW

COURSE SPECIFICATION

This course will provide an introduction of materials science & engineering topics. 1). The four materials classes (metals, ceramics, polymers, composites) will be addressed with emphasis upon the material types and material properties pertinent to their use in implanted medical devices.

2) The structure and properties of biologic tissues and biocompatibility. 3) Specific implant applications will be addressed

1. Teaching Institution	Ministry of Higher Education & Scientific Research
2. University Department/Centre	University of Technology
3. Course title/code	Advanced Biomaterials
4. Programme(s) to which it contributes	Biomedical Engineering/ Biomechanics
5. Modes of Attendance offered	Course
6. Semester/Year	2 nd / 3ed level
7. Number of tuition hours (total)	4
8. Date of production/revision of this specification	6/7/2021
9. Aims of the Course	

To introduce undergraduate students to the common types of materials and implant device currently utilized in the surgical practice of medicine.

To present and discuss the areas of materials science and engineering, which are particularly important to achieve desired implant properties and performance.

To address the important aspects of biocompatibility that determine how the body responds to implanted materials and devices

To introduce regulatory and ethical concerns dealing with the implementation and commercialization of biomaterials and medical devices

10• Learning Outcomes, Teaching, Learning and Assessment Methods

A- Knowledge and Understanding

A1: Advanced application of biomaterials

A2: the basic rules in biomaterials selection

- A3: how to solve problems in biomedical application related to biomaterials
- A4: Wide range of biomaterials application

A5:

A6:

B- Subject-specific skills

B1: Biomaterials Selection

B2: Solve structural problems in biomaterials

B3: Apply knowledge in real case studies

Teaching and Learning Methods

Theory, Discussions, Exams, Seminars, Case studies

Assessment Methods

C- Thinking Skills

C1: interactive study C2:Tem work C3: Make decisions C4: Ability to solve problems related to biomaterials C5: C6:

Teaching and Learning Methods

1.

Assessment Methods

Seminars, Life discussions

D- General and Transferable Skills (other skills relevant to employability and personal development)	
D1:	
D2:	
D3:	
D4:	
D5:	
D6:	

11. Course S	11· Course Structure				
Week	Hours	ILOs	Unit/Module or Topic title	Teaching Method	Assessment Method
1	4		Review about application of biomaterials	Theory+ Exp.	Seminars
2	4		Hydrogels, Smart Polymers	Theory+ Exp.	Life discussions
3	4		Medical Fibers and Biodegradable materials	Theory+ Exp.	
4	4		Biodegradable materials, Natural materials	Theory+ Exp.	
5	4		Natural materials, Surface Modification	Theory+ Exp.	
6	4		Metallic biomaterials	Theory+ Exp.	
7	4		Ceramics and Glasses biomaterials	Theory+ Exp.	
8	4		Composites biomaterials	Theory+ Exp.	
9	4		Composites biomaterials	Theory+ Exp.	

10	4		odontics aterials for	Theory+ Exp.	
11	4	Functi graded bioma	1	Theory+ Exp.	
12	4		truction placement terials	Theory+ Exp.	
13	4	Dental Bioma	terials	Theory+ Exp.	
14	4	Smart bioma	terials I	Theory+ Exp.	
15	4	Smart bioma	terials II	Theory+ Exp.	

12· Infrastructure	
Required readings: - Core Texts - Course Materials - Other	 Biomaterials: The Intersection of Biology and Materials Science, Temenoff and Mikos Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons. Biomaterials Science: An Introduction to Materials in Medicine, Academic Press, 2004, USA Joyce Y. Wong Joseph D.Bronzino "Biomaterials," CRC Press,2007.
Special requirements (include for example workshops, periodicals, IT software, websites)	Videos, seminars
Community-based facilities (include for example, guest lectures, internship, field studies)	Field studies

13. Admissions	
Pre-requisites	Design and application of biomaterials course
Minimum number of students	30
Maximum number of students	34

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	Ministry of Higher Education & Scientific Research			
2. University Department/Centre	University of Technology/ Biomedical Engineering Department			
3. Course title/code	Engineering Analysis			
4. Programme(s) to which it contributes	BM & IM			
5. Modes of Attendance offered	Virtual Attendance			
6. Semester/Year	I semester/3 rd year			
7. Number of tuition hours (total) 45 hours semester				
8. Date of production/revision of this specification 6/12/2020				
9. Aims of the Course				
1. understand the role of mathematics in solving the engineering problems				
2. Introduce Mathematical concepts essential to the solve the differential equation in engineering systems				
3. Apply basic concepts of discrete engineering system of equations in different applications				

10. Learning Outcomes, Teaching, Learning and Assessment Methods			
A- Knowledge and Understanding			
A1: ability to apply knowledge in math and science in engineering fields of biomedical engineering applications			
A2: collect the necessary science in various disciplines related to biomedical			
engineering			
A3: prepare students for the continuation of the self-learning and the collection of new			
technologies and skills in the field of biomedical engineering			
A4: building skills by following the correct procedures			
B- Subject-specific skills			
B1: Ability to pick and hold the required examinations and the collection, comparison			
and analysis of test results			
B2: Ability to derive and solve engineering problems related to the topics of			
biomedical engineering			

Teaching and Learning Methods

The teaching method that will be used in this course will be composed of a series of mini lectures interrupted with frequent discussions and brainstorming exercises. Using white board and Data show

Assessment Methods

- 1. Method of rapid test and snap
- 2. Identify some homework
- 3. Quarterly exams

C- Thinking Skills

- C1. Analyze problems involving differential equations and its applications
- C2. Study the solution properties of discreet and continuous field problems
- C3. Apply different mathematical models to describe some biomedical applications.

Teaching and Learning Methods

- 1. Explain the required term
- 2. To discuss ideas and share knowledge
- 3. Methodology and use the text books

Assessment Methods

- For the purpose of evaluation is used
- 1. Method of rapid test and snap
- 2. Identify some homework
- 3. Quarterly exams

D- General and Transferable Skills (other skills relevant to employability and personal development)

D1: Ability to analyze the complex function problems.

D2: Ability to analyze and solve the differential equations using Laplace transform

D3: Ability to analyze and solve the discrete (discontinuous) functions

D4: Ability to analyze and solve Z- transform problems

D5: Ability to analyze and solve the Fourier series and Fourier transform problems

D6: Ability to analyze and solve the partial differential equations

11. Course St	11. Course Structure				
Week	Hours	ILOs	Unit/Module or Topic title	Teaching Method	Assessment Method
1	3	Introduction to complex functions	Complex analysis	Lectures and discussions	Quizzes, H.W., and exams
2	3	Applications of complex functions	Complex analysis	Lectures and discussions	Quizzes, H.W., and exams
3	3	Laplace transform (Defined and applied to basic functions)	Laplace transform	Lectures and discussions	Quizzes, H.W., and exams
4	3	Inverse Laplace transform (Defined and applied to basic functions)	Laplace transform	Lectures and discussions	Quizzes, H.W., and exams
5	3	Solving ODEs using Laplace transform	Laplace transform	Lectures and discussions	Quizzes, H.W., and exams
6	3	Solving simultaneous ODEs using Laplace transform	Laplace transform	Lectures and discussions	Quizzes, H.W., and exams
7	3	Solving of step function in Laplace transform	Laplace transform	Lectures and discussions	Quizzes, H.W., and exams
8	3	Solving of periodic function in Laplace	Laplace transform	Lectures and	Quizzes, H.W., and

		transform		discussions	exams
9	3	Introduction to Z- Transform and its applications	Z- Transform	Lectures and discussions	Quizzes, H.W., and exams
10	3	Solving Recurrence relations in Z- Transform	Z- Transform	Lectures and discussions	Quizzes, H.W., and exams
11	3	Introduction to Fourier series	Fourier series	Lectures and discussions	Quizzes, H.W., and exams
12	3	Even and Odd functions	Fourier series	Lectures and discussions	Quizzes, H.W., and exams
13	3	Fourier transform (definition and applications	Fourier series	Lectures and discussions	Quizzes, H.W., and exams
14	3	One dimensional partial differential equations	Partial differential equations	Lectures and discussions	Quizzes, H.W., and exams
15	3	Two dimensional partial differential equations	Partial differential equations	Lectures and discussions	Quizzes, H.W., and exams

12· Infrastructure	
Required readings: - Core Texts - Course Materials - Other	Advanced Engineering Mathematics By: E. Kreyszig Advanced Engineering Mathematics By: C. Ray Wylie
Special requirements (include for example workshops, periodicals, IT software, websites)	Virtual meetings
Community-based facilities (include for example, guest lectures, internship, field studies)	

13. Admissions	
Pre-requisites	Engineering mathematics and calculus
Minimum number of students	
Maximum number of students	

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

Addresses a unique rule of biomaterial in medical device design and the use of emerging biomaterials technology in medical device. The need to understand design requirements of medical devices based on safety and efficacy will be addressed. An expected device failure due to synergistic interactions from chronic loading, aqueous environments and biologic interactions. Testing methodologies to assess accelerated effects of loading in physiologic-like environments. Evaluate biomaterials and their properties as related to design and reliability of medical devices.

Design of various biomedical systems and devices such as cardiovascular assist devices orthopaedic devices, pulmonary assist devices, neurological devices, and diagnostic

systems.

1. Teaching Institution	Ministry of Higher Education & Scientific Research
2. University Department/Centre	University of Technology /Biomedical Engineering Department
3. Course title/code	Design of Medical Devices (BME 450)
4. Programme (s) to which it contributes	(Biomechanical and Medical Instrumentation Branches)
5. Modes of Attendance offered	Google meet + Google classroom full time + online
6. Semester/Year	Fourth year / Second term – 2020/2021
7. Number of tuition hours (total)	2 theoretical hours + 2 Laboratory hours/ week (total number of hours 60 hours)
8. Date of production/revision of this specification	5/7/2021
9. Aims of the Course	

The main goals of this course are:

- 1- This course is designed to provide the student with an introduction to systems and devices used in the biomedical industry and the basic principles of their design.
- 2- It is meant to offer the students an application in the biomedical area to the basic theory developed in the lower level course work as well as an opportunity to learn basic steps and processes involved in engineering design as it specifically applies to biomedical problems.
- 3-Global Learning principles will be integrated into the course work through the use of international standards (multicultural marketing and design considerations, societal and environmental considerations, as well as ethics and sustainability.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

A- Knowledge and Understanding

Students Upon successful completion of the course, the student will be able:

A1: Ability to apply the principles of engineering design from recognition of need to a fully-tested product.

A2 .Ability to organize and manage a design project and work effectively in a team to complete the project.

A3 .Ability to recognize the existence, similarities and differences of various regulatory processes for assessment and approval for commercialization of biomedical devices and systems in national and the global markets.

A4 .Ability to apply knowledge of natural physiological systems to the design of their replacements and to devise means to overcome constraints in doing so.

A5 .Ability to design and conduct tests to verify design input and validate the final product to meet user needs.

A6 .Ability to Communicate items 1 through 5 in written, oral and graphical form. A7 .Students will learn the process to formulate and present an engineered solution which will directly or indirectly enable or enhance the diagnosis or treatment of a current unresolved issue of global biomedical significance.

A8 .Ability to implement the design tools (i.e. QFD, FMECA, budget analysis, cost analysis, simulations, prototyping and verification testing) effectively toward assessment, development and verification of a Biomedical system, Device or manufacturing process which will address global clinical needs diagnostically or therapeutically.

B- Subject-specific skills

At the end of the semester, the student should be able to define:

B1: The student will be able to identify, analyze and integrate ethics, similarities and differences in multiple markets and cultures.

B2: Students will be able to conduct an analysis of an engineering problem and its global impact by identifying different factors such as technology, economics and society and their contributions to the problem and/or solution.

B2: Students will be willing to work in teams to develop solutions, actions, and action plans to address local, global and /or international engineering problems.

Teaching and Learning Methods

Prepared lectures, Date show, direct explanations on blackboard and bio-medical related video you-tubes.

Assessment Methods		
Assessment:		
Coursework and quizzes exams (2 written) and homework	10%	
Mid Examinations (2hr written exams)	15%	
Student Attendances	5%	
Coursework reports and Labaratory quizzes exams	25%	
Final Examination (3hr written exam)	50%	

C- Thinking Skills

- C1: A1: Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.
- C2: Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.
- C3: Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Methods

- 1-Employing the faculty's ability and experience in communicating the scientific material to the student
- 2- Encouraging the student to discuss, debate and draw conclusions

Assessment Methods

Periodic and final exams (oral questions during lectures, reports and research)

D- General and Transferable Skills (other skills relevant to employability and personal development)

- D1: The learner's use of information in real life situations in medical institutions after graduation
- D2: Using modern knowledge to develop examination devices within health institutions
- D3: Using modern knowledge in preparing national standards for the acceptability of medical devices and biological materials, methods of examination and biological acceptability
- D4: Improving writing skills, dialogue skills, and problem solving, using teamwork in all aspects of life.

11. Course Structure

Week	Hours	ILOs	Unit/Module or Topic title	Teaching Method	Assessment Method
(1-2)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Risk management	Theoretical Lecture	As mentioned above
(3-4)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Device reliability •	Theoretical Lecture	As mentioned above
(5)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Device durability •	Theoretical Lecture	As mentioned above
(6-7)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Device maintainability •	Theoretical Lecture	As mentioned above
(8-9)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Device serviceability •	Theoretical Lecture	As mentioned above
(10-11)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Human factors engineering •	Theoretical Lecture	As mentioned above
(12-13)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Software engineering ·	Theoretical Lecture	As mentioned above
(14-15)	2Hrs Theory+ 2Hrs. ANSYS Laboratory	Student understanding of the lecture and achieving its objective	Clinical evaluations	Theoretical Lecture	As mentioned above

12· Infrastructure	
Required readings: - Core Texts	Recommended Text book
- Course Materials - Other	1- Reliable Design of Biomedical Devices, Second Edition (Richard Fries) by Taylor & Francis Group (ISBN 0-8247-2375-9) or (978082472370)
	Reference books
	1- Does Cultures Matter for Product Design, By Don Norman
	2-The Influence of Designers' own Culture on the Design Aspects of products, By Mohammad Tazzaghi and Mariano Ramirez J
	3-Medical Device Developments
	www.medicaldevice-developments.com
	4- Beyond Compliance: Medical Device Product Development
	https://ww2.frost.com/files/3914/2200/7195/Beyond_Compliance.pdf
	5-International Medical Device Regulators Forum (IMDRF)
	https://www.fda.gov/MedicalDevices/InternationalPrograms/IMDRF/
	6- WHO Medical devices www.who.int > Medical devices
Special requirements (include for example workshops, periodicals, IT software, websites)	International standards and standards, related YouTube
Community-based	Nothing
facilities (include for	Nothing
example, guest lectures, internship,	
field studies)	

13. Admissions	
Pre-requisites	Engineering and industrial drawing and AutoCAD drawing program, Engineering Mechanics I & II and Strength of Materials I &II
Minimum number of students	20
Maximum number of students	50

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This course provides a description of the most important modern methods of biomaterials inspections to encompasses the assessment of their safety and performance. As stated in FDA's Medical Device User Fee Act (MDUFA) and EU Regulation on Medical Devices, safety and performance of medical devices are of .equal importance

A wide range of in vitro and in vivo tests may be used to evaluate cytotoxicity, genotoxicity, pyrogenicity, local effects following implantation, hemocompatibility, sensitization potential and systemic toxic effects of biomaterials. If further information on the carcinogenicity or reproductive/developmental toxicity is published, they will also be considered. In very rare cases, additional tests are also carried out if required by regulators.

1. Teaching Institution	Ministry of Higher Education & Scientific Research
2. University Department/Centre	University of Technology /Biomedical Engineering Department
3. Course title/code	Biomaterials inspections
4. Programme (s) to which it contributes	(Medical Instrumentation Branch)
5. Modes of Attendance offered	Google meet + Canvas+ Google classroom full time + online
6. Semester/Year	Third year / Second term – 2020/2021
7. Number of tuition hours (total)	2 theoretical hours + 2 laboratory hours (total number of hours + 60 hours)
8. Date of production/revision of this specification	5/7/2021
9. Aims of the Course	

The main goals of this course are:

- 1 .Describe the mechanical, chemical, and biological properties of medicinal and biological materials, as well as their main applications as biomaterials or other biological products.
- 2 .Explain the principles of testing techniques for existing biomaterials.
- 3. Comparison between the pros and cons of different biomaterials and the appropriate examination methods for them.
- 4. To study and characterize the natural and artificial and natural materials testing methods for use in the human body to measure, restore, and improve physical functions and enhance survival and quality of life.
- 5. To study and characterize the assisting in regenerating, repairing, supporting and replacing defect tissues and esthetic parts.

10. Learning Outcomes, Teaching, Learning and Assessment Methods
A- Knowledge and Understanding
Students Upon successful completion of the course, the student will be able:
A1: Differentiate the various classes of biomaterials inspections.
A2: Differentiate the various analytical methods used to characterize biomaterials
properties.
A3: Differentiate the various biomedical devices components inspection methods.
A4: Describe various aspects of biomedical device design, fabrication and testing.
B- Subject-specific skills
B1: Select the appropriate bio-related testing method for specific applications.
B2: Definition of institutions related to biological materials and modern examination
methods
B3: Defining the relevant institutions of the most important international institutions
that are concerned with setting standards for the acceptability of biological materials
and modern examination methods.
Teaching and Learning Methods
Prepared lectures, Date show, direct explanations on blackboard and bio-medical related video you-tubes.
Assessment Methods
Assessment:

Coursework and quizzes exams (2 written) and homework	5%
Mid Examinations (2hr written exams)	15%
Student Attendances	5%
Laboratory coursework reports and quizzes exams	25%
Final Examination (3hr written exam)	50%

C- Thinking Skills

- C1: A1: Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.
- C2: Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.
- C3: Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Methods

- 1-Employing the faculty's ability and experience in communicating the scientific material to the student
- 2- Encouraging the student to discuss, debate and draw conclusions

Assessment Methods

Periodic and final exams (oral questions during lectures, reports and research)

D- General and Transferable Skills (other skills relevant to employability and personal development)

- D1: The learner's use of information in real life situations in medical institutions after graduation
- D2: Using modern knowledge to develop examination devices within health institutions
- D3: Using modern knowledge in preparing national standards for the acceptability of medical devices and biological materials, methods of examination and biological acceptability
- D4: Improving writing skills, dialogue skills, and problem solving, using teamwork in all aspects of life.

11. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic title	Teaching Method	Assessment Method
(1-2)	2Hrs Theory+ 2Hrs Lab.	Student understanding of the lecture and achieving its objective	LECTURE (1) INTRODUCTION	Theoretical Lecture	As mentioned above
(3-4)	2Hrs Theory+ 2Hrs Lab.	Student understanding of the lecture and achieving	LECTURES (2-3) PROPERTIES AND INSPECTIONS OF	Theoretical Lecture	As mentioned above

		its objective	BIOMATERIALS		
(5)	2Hrs Theory+ 2Hrs Lab.	Student understanding of the lecture and achieving its objective	LECTURE (4) Nondestructive Testing	Theoretical Lecture	As mentioned above
(6-7)	2Hrs Theory+ 2Hrs Lab.	Student understanding of the lecture and achieving its objective	LECTURES (5-6) BIOLOGICAL TESTING OF BIOMATERIALS (Invitro Tests)	Theoretical Lecture	As mentioned above
(8-9)	2Hrs Theory+ 2Hrs Lab.	Student understanding of the lecture and achieving its objective	LECTURES (7-8) In Vivo Assessment of Tissue Compatibility (1)	Theoretical Lecture	As mentioned above
(10-11)	2Hrs Theory+ 2Hrs Lab.	Student understanding of the lecture and achieving its objective	LECTURE (9-11) In Vivo Assessment of Tissue Compatibility (2)	Theoretical Lecture	As mentioned above
(12-13)	2Hrs Theory+ 2Hrs Lab.	Student understanding of the lecture and achieving its objective	LECTURES (12- 13) Basic Toxicology	Theoretical Lecture	As mentioned above
(14-15)	2Hrs Theory+ 2Hrs Lab.	Student understanding of the lecture and achieving its objective	Lecture (14-15) Inspection of Blood-Material Interactions	Theoretical Lecture	As mentioned above

12· Infrastructure	
Required readings: - Core Texts - Course Materials - Other	Recommended Text book 1 -Jeff D. Berg," MECHANICAL TESTING DEVICE FOR VISCOELASTIC BIOMATERIALS" University of Nebraska – Lincoln, 2010. Reference books

	1-Dr. Bree M. Sharratt "Non-Destructive Techniques and Technologies for Qualification of Additive Manufactured Parts and Processes", DRDC-RDDC-2015-C035. March 2015.
	2-Mohammed Omar, "NONDESTRUCTIVE TESTING METHODS ANDNEW APPLICATIONS", Janeza Trdine 9, 51000 Rijeka, Croatia,2012.
Special requirements (include for example workshops, periodicals, IT software, websites)	International standards and standards, related YouTube
Community-based facilities (include for example, guest lectures, internship, field studies)	Nothing

13. Admissions	
Pre-requisites	Biomaterials, Engineering Mechanics I & II and Strength of Materials I &II
Minimum number of students	20
Maximum number of students	50

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

Basic properties and concepts of fluid and solid mechanics are introduced in static and flow with problems and applied to the analysis of blood flow in the macro and microcirculation, and to other physiological flows. The viscosity, surface tension capillary action and its applications. Analysis of mathematical models is combined with discussions of physiological mechanisms. Energy equations, Bernolles equation, viscous flow analyses and pulsate flow.

1. Teaching Institution	Ministry of Higher Education & Scientific Research		
2. University Department/Centre	University of Technology/ Biomedical Engineering Department		
3. Course title/code	Bio-fluid mechanics/ BME		
4. Programme(s) to which it contributes	general		
5. Modes of Attendance offered	Virtual Attendance		
6. Semester/Year	II semester /2 nd year		
7. Number of hours tuition (total)	60 hours semester		
8. Date of production/revision of this Specification	6/12/2020		
9. Aims of the Course			
1. understand the role of physiological fluid mechanics in Biomedical Engineering			
2. Introduce fluid concepts essential to the understanding of biofluid mechanics and physiological fluid mechanics			
3. Apply basic concepts in fluid mechanics to clinical fluid dynamic measurements			

10. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Knowledge and Understanding

A1. Revisit Basic Concepts in Fluid Mechanics and Study the kinematics of Fluid Flow

A2. Apply hydrostatics equations to clinical applications

A3. Apply conservation relations to fluid flow and Difference between viscid and inviscid flow

A4. Analyze the flow properties of blood, and blood vessel structure

B. Subject-specific skills

B1. Explain the different models of Biofluid and blood flow

B2. Apply Poiseuilli's Law to the study of Blood Flow

B3. Introduce the different classes of Non-Newtonian fluids

B4. Study the operation of heart valves and its relation to blood flow in arteries

Teaching and Learning Methods

The teaching method that will be used in this course will be composed of a series of mini lectures interrupted with frequent discussions and brainstorming exercises. Using white board and virtual meeting.

Assessment methods

For the purpose of evaluation is used

- 1. Method of rapid test and snap
- 2. Identify some homework
- 3. Quarterly exams

C. Thinking Skills

C1. Analyze problems involving circulatory biofluid mechanics and blood rheology

- C2. Study the flow properties of blood and their relation to blood vessel structure
- C3. Apply different mathematical models to describe the behavior of viscous fluids flow

Teaching and Learning Methods

- 1. Explain the required term
- 2. To discuss ideas and share knowledge
- 3. Methodology and use the text books

Assessment methods

D. General and Transferable Skills (other skills relevant to employability and personal development).

D1. Experimental test in laboratory.

 $D2. \ Reports \ set \ related \ to \ the \ theoretical \ objects$

			Unit/Modul	Teaching	Assess
Week	Hours	ILOs	e or	Method	ment
				Ivictilou	
			Topic		Met
			Title		hod
			2 nd semester		1
1	4	- Introduction to Physiological Fluid Mechanics	Introduction &Basic concepts	Explain of theoretical subjects	Quiz. H.W exam and Ex. Reports
2	4	Kinematics of Fluid Flow, Hydrostatics - Conservation Relations	Fluid kinematics	Explain of theoretical subjects with examples	Quiz. H.W exam and Ex. Reports
3	4	Viscous Flow	Viscous Flow	Explain of theoretical subjects with examples	Quiz. H.W exam and Ex. Reports
4	4	- Unsteady Flow	Unsteady Flow	Explain and derive the related eqs.	Quiz. H.W exan and Ex. Reports
5	4	- Analysis of Total Peripheral Flow	Peripheral Flow	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
6	4	- Circulatory Biofluid Mechanics	Biofluid Circulatory	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
7	4	- Flow Properties of Blood	Blood flow	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
8	4	-Clinical Fluid Dynamic Measurements	Measurements	Explain and derive the related eqs.	Quiz. H.W exan and Ex. Reports
9	4	- Blood Vessel Structure	Blood Vessel Structure	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
10	4	- Applications of Poiseuilli's Law	Poiseuilli's Law	Explain and derive the related eqs	Quiz. H.W exan and Ex. Reports
11	4	Introduction to Non- Newtonian Fluids	Non-Newtonian Fluids	Explain and derive the related eqs	Quiz. H.W exan and Ex. Reports
12	4	- Operation of Heart Valves	Heart Valves	Explain and derive the related eqs	Quiz. H.W exan and Ex. Reports
13	4	- Shear Stress on Vessel Wall	Vessel Wall	Explain and derive the related eqs	Quiz. H.W exam and Ex. Reports
14	4	- Blood Vessel Bifurcation	- Blood Vessel Bifurcation	Explain and derive the related eqs	Quiz. H.W exam and Ex. Reports

12. Infrastructure	
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	 Lighthill, J. "Physiological Fluid Mechanics." Springer-Verlag. Hellums, J. and Brown, C. "Cardiovascular Fluid Dynamics." University Press Fung, Y.C. (1996). "Biomechanics: Properties of Living Tissues." Springer-Verlag Fung, Y.C. (1993). "First Course in Continuum Mechanics of Physical and Biological Engineers and Scientists." 3rd Ed. Prentice-Hall.
Special requirements (include for example workshops, periodicals, IT software, websites)	Experimental apparatus in fluid mechanics laboratory for perform experimental test
Community-based facilities (include for example, guest Lectures, internship, field studies)	

ſ

13. Admissions	
	Fundamental basic concepts and applications of physics and Engineering mathematics.
Minimum number of students	95
Maximum number of students	101

_

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

Study of biotribology aim to gather information about friction, adhesion, lubrication and wear of systems, surface contact area. Friction theories, wear theories, wear in practical. Experimental methods Also The thermal and hydrolytic sensitivities of biological materials limit their applicability in many important synthetic materials applications. lubrication theories, tribology in biological systems and instruments.

1. Teaching Institution	Ministry of Higher Education & Scientific Research		
2. University Department/Centre	University of Technology/ Biomedical Engineering Department		
3. Course title/code	biotribology/ BME		
4. Programme(s) to which it contributes	BM		
5. Modes of Attendance offered	Virtual Attendance		
6. Semester/Year II semester/ 4 th year			
7. Number of hours tuition (total)60 hours semester			
8. Date of production/revision of this Specification	- 6/17/70/10		
9. Aims of the Course			
1. Understand the fundamental mechanisms of friction, laws and simple theories.			
2. Describe the laws and simple theories of wear, the basic mechanisms and phenomena of wear, and theories of lubrication.			
3. Appreciate the consequences of friction and wear on different types or biomaterials of implants			

10. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Knowledge and Understanding

- A1. Revision the Basic Concepts in biotribology and Study the surface science.
- A2. Apply lubrication methods to human joints
- A3. Apply and analysis of human joints.
- A4. Analyze the artificial joints and their biomaterials.

B. Subject-specific skills

- B1. Explain the different models of friction
- B2. Apply types of friction and materials used in joints.
- B3. Introduce the different human joints.

Teaching and Learning Methods

The teaching method that will be used in this course will be composed of a series of mini lectures interrupted with frequent discussions and brainstorming exercises. Using white board and Data show

Assessment methods

- For the purpose of evaluation is used
- 1. Method of rapid test and snap
- 2. Identify some homework
- 3. Quarterly exams

C. Thinking Skills

- C1. Analyze problems involving friction and surface nature.
- C2. Study the joint types
- C3. Study the types of materials and implants

Teaching and Learning Methods

- 1. Explain the required term
- 2. To discuss ideas and share knowledge
- 3. Methodology and use the text books

Assessment methods

D. General and Transferable Skills (other skills relevant to employability and personal development).

D1. Experimental test in laboratory.

D2. Reports set related to the theoretical objects

11. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessme nt Method
I		2 nd sem	ester		
1	4	Introduction to Bio-Tribology: Friction, Surface Roughness and Finishing, Lubrication ,Synovial Membrane, theories of lubrication	Introduction to Bio- Tribology:,	Explain of theoretical subjects	Quiz. H.W exam and Ex. Reports
2	4	Wear, mechanisms of wear Adhesive, Abrasive, Fatigue, Linear wear, Volumetric wear, Wear testing, Wear rate, Laws of wear, Corrosion,	Wear, mechanisms, , , Corrosion Types	Explain of theoretical subjects with examples	Quiz. H.W exam and Ex. Reports
3	4	The structure, friction and wear of natural joints, types of implants, (cemented and cementless), biomaterials of joint replacements,	The structure, friction and wear of natural joints, materials.	Explain of theoretical subjects with examples	Quiz. H.W exam and Ex. Reports
4	4	Implant geometry, Manufacturing methods and metallurgy, Tribology of metal-on-metal bearings, Effects of material and design on the	Implant geometry, Manufacturing methods and metallurgy Tribology	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
5	4	Metal alloys in joint replacements, stainless steel, cobalt, nickel,	Metal alloys in joint replacements,	Explain and derive the	Quiz. H.W exam and Ex.
6	4	Titanium (Ti) Alloys, Biotribological properties of	Titanium (Ti) Alloys, Biotribological	Explain and derive the	Quiz. H.W exam and Ex.
7	4	Ceramic evolution and internal/surface treatments to use in		Explain and derive the	Quiz. H.W exam and Ex.
8	4	Diamond, bioglass, Bioactive ceramics and glasses as coatings to improve bone bonding,	Diamond, bioglass, Bioactive ceramics and glasses as	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
9	4	Polymer evolution and internal/surface treatments,	Polymer evolution and internal/surface	Explain and derive the	Quiz. H.W exam and Ex.
10	4	Effects of temperature on performance of artificial joints,	Effects of temperature on	Explain and derive the	Quiz. H.W exam and Ex.
11	4	Experimental Wear Studies of Total Joint Replacements, Methods	Experimental Wear Studies of Total Joint	Explain and derive the	Quiz. H.W exam and Ex.
12	4	Design of Artificial Joints: Shoulder joints and its	Design of Artificial Joints	Explain and derive the	Quiz. H.W exam and Ex.
13	4	Wrist joints and its replacements, Finger joint and its replacements	Design of Artificial Joints	Explain and derive the	Quiz. H.W exam and Ex.
14	4	Hip joints and its replacements, Knee joint and its replacements,	Design of Artificial Joints	Explain and derive the	Quiz. H.W exam and Ex.
15	4	Revision	Revision	Explain and derive the	Quiz. H.W exam and Ex.

12. Infrastructure		
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	 J. Paulo Davim, Biotribology, John Wiley & Sons, 2013 JOHN H. DUMBLETON, Tribology of Natural and Artificial Joints, ELSEVI ER, 1981 	
	Experimental apparatus in biotribology laboratory for perform experimental test	
Community-based facilities (include for example, guest Lectures, internship, field studies)	www.elsevier.com/locate/biotri	

13. Admissions		
Pre-requisites	Fundamental basic concepts and biomaterial and mechanics.	applications of

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

Basic properties and concepts of thermodynamics and energy are introduced with problems and applied to the analysis of human body, the conservation of mass and energy and entropy balance; the properties, equations of state, and the processes and cycles for reversible and irreversible thermodynamic systems; metabolism and human body energy, and modes of energy transfer. Thermodynamic principles will be applied to modern engineering in biological systems.

1. Teaching Institution	Ministry of Higher Education & Scientific Research		
2. University Department/Centre	University of Technology /Biomedical Engineering Department		
3. Course title/code	Thermodynamics /		
4. Programme(s) to which it contributes	General		
5. Modes of Attendance offered	Virtual Attendance		
6. Semester/Year	1 st semester/ 2 nd year		
7. Number of hours tuition (total)	60 hours semester		
8. Date of production/revision of this Specification	6/12/2020		
9. Aims of the Course			
1. Appreciate the role of energy analysis in Biomedical Engineering			
2. Introduce thermodynamics concepts essential to the understanding of biological systems and instruments			
3. Apply basic concepts in thermodynamics and energy measurements			

10. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Knowledge and Understanding

A1. Revision the Basic Concepts in systems and their behavior; measurement units; volume, pressure, temperature.

A2. Energy and the first law of thermodynamics: Energy, work, and heat

A3. Evaluating properties of matter: Equations of state; ideal gas law; ideal gas properties.

A4. Second law of thermodynamics: Introduction; irreversible and reversible processes

B. Subject-specific skills

B1.Demonstrate an understanding of the thermodynamic properties and equations of state.

- B2. Demonstrate an ability to apply the first law of thermodynamics to engineering processes
- B3. Demonstrate an understanding of entropy and the second law of thermodynamics.
- B4. Demonstrate an ability to analyze reversible and irreversible systems.

Teaching and Learning Methods

The teaching method that will be used in this course will be composed of a series of mini lectures interrupted with frequent discussions and brainstorming exercises. Using white board and Data show

Assessment methods

- For the purpose of evaluation is used
- 1. Method of rapid test and snap
- 2. Identify some homework
- 3. Quarterly exams

C. Thinking Skills

C1. Apply the laws of thermodynamics to steady state open systems.

- C2. Apply the laws of thermodynamics to human body, metabolism and other activities.
- C3. Apply different mathematical models to describe the thermodynamics of biological systems.

Teaching and Learning Methods

- 1. Explain the required term
- 2. To discuss ideas and share knowledge
- 3. Methodology and use the text books

Assessment methods

D. General and Transferable Skills (other skills relevant to employability and personal development).

D1. Experimental tests in laboratory.

 $D2. \ Reports \ set \ related \ to \ the \ theoretical \ objects$

11. Cou	urse Stru	ucture			
Week	Hours	ILOs	Unit/Modul e or Topic Title	Teaching Method	Assess ment Met hod
			1 st semester		
1	4	- Introduction to thermodynamics	Introduction &Basic concepts	Explain of theoretical subjects	Quiz. H.W exam and Ex. Reports
2		Properties and its measurements	Thermodynamic measurements and units	Explain of theoretical subjects with examples	Quiz. H.W exam and Ex. Reports
3			Energy and heat relations	Explain of theoretical subjects with examples	Quiz. H.W exam and Ex. Reports
4	4	- Steady Flow energy Eq.	steady Flow	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
5	4	- Unsteady Flow energy Eq. - 2 nd law of	Unsteady Flow	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
6			2 nd law of thermodynamics	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
7	4	- Reversible and irreversible processes	Reversibility	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
8		Introduction to heat transfer, conduction, convection, and radiation	Heat transfer,	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
9		- Thermodynamics of human body and metabolism	Metabolism	Explain and derive the related eqs.	Quiz. H.W exam and Ex. Reports
10	4	- Heart and cardiovascular system	Cardiac system	Explain and derive the related eqs	Quiz. H.W exam and Ex. Reports
11		Lungs and respiration system	Respiration system	Explain and derive the related eqs	Quiz. H.W exam and Ex. Reports
12		- Protein decomposition, the 3 rd law of thermodynamic and biology.	dynamics	Explain and derive the related eqs	Quiz. H.W exam and Ex. Reports
13	4	- Thermochemistry of human body	Thermochemistry	Explain and derive the related eqs	Quiz. H.W exam and Ex. Reports
14	4	- Lymphatic system	- Lymphatic system	Explain and derive the related eqs	Quiz. H.W exam and Ex. Reports
15	4	Brain and Endocrine	Brain and Endocrine	Explain and derive the related eqs	Quiz. H.W exam and Ex. Reports

12. Infrastructure			
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	 Thermodynamics 2005 (An Engineering Approach) seventh edition, Yunus A. Cengel, & Michael A. Boles. Guyton A C, Hall J A, Textbook of Medical Physiology, Saunders Company, 1996 Hobbie R H, Intermediate physics for medicine and biology 		
Special requirements (include for example workshops, periodicals, IT software, websites)	Experimental apparatus in fluid mechanics laboratory for perform experimental test		
Community-based facilities (include for example, guest Lectures, internship, field studies)			

13. Admissions			
1 TO TOQUISITOS	Fundamental basic concepts and applications of physics and mathematics.		
Minimum number of students	95		
Maximum number of students	101		

_