
Lecture 2: Variables, Vectors
and Matrices in MATLAB

Variables in MATLAB
• Just like other programming

languages, you can define
variables in which to store
values.

• All variables can by default
hold matrices with scalar or
complex numbers in them.

• You can define as many
variables as your PC memory
can hold.

• Values in variables can be
inspected, used and changed

• Variable names are case-
sensitive, and show up in the
Workspace.

>> A = 5

A =

 5

>> d = 7

d =

 7

>> LightSpeed = 3e8

LightSpeed =

 300000000

2

Variables

• You can change the
value in the variable by
over-writing it with a
new value

• Remember that variables
are case-sensitive (easy
to make a mistake)

• Always left-to right
>> variable = expression

>> a = 7

a =

 7

>> b = 12

b =

 12

>> b = 14

b =

 14

>> B = 88

B =

 88

>> c = a + b

c =

 21

>> c = a / b

c =

 0.5000

3

Exercise

• Develop MATLAB
code to find
Cylinder volume
and surface area.

• Assume radius of 5 m
and height of 13 m.

2 2 g � ℎ

4

hr

Solution

5

>> r = 5

r =

 5

>> h = 13

h =

 13

>> Volume = pi * r^2 * h

Volume =

 1.0210e+003

>> Area = 2 * pi * r * (r + h)

Area =

 565.4867

Useful MATLAB commands

6

Vectors and Matrices (Arrays)

• So far we used MATLAB variables to
store a single value.

• We can also create MATLAB arrays that
hold multiple values
– List of values (1D array) called Vector

– Table of values (2D array) called Matrix

• Vectors and matrices are used
extensively when solving engineering
and science problems.

7

Row Vector

• Row vectors are special cases of matrices.

• This is a 7-element row vector (1 × 7 matrix).

• Defined by enclosing numbers within square
brackets [] and separating them by , or a space.

>> C = [10, 11, 13, 12, 19, 16, 17]

C =

 10 11 13 12 19 16 17

>> C = [10 11 13 12 19 16 17]

C =

 10 11 13 12 19 16 17

8

Column Vector

• Column vectors are special cases of matrices.

• This is a 7-element column vector (7 × 1 matrix).

• Defined by enclosing numbers within [] and
separating them by semicolon ;

>> R = [10; 11; 13; 12; 19; 16; 17]

R =

 10

 11

 13

 12

 19

 16

 17

9

Matrix
• This is a 3 × 4-element matrix.
• It has 3 rows and 4 columns (dimension 3 × 4).
• Spaces or commas separate elements in different columns,

whereas semicolons separate elements in different rows.
• A dimension n × n matrix is called square matrix.

>> M = [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0]

M =

 1 3 2 9

 6 7 8 1

 7 4 6 0

>> M = [1 3 2 9; 6 7 8 1; 7 4 6 0]

M =

 1 3 2 9

 6 7 8 1

 7 4 6 0

10

Transpose of a Matrix

• The transpose operation interchanges the rows and
columns of a matrix.

• For an m × n matrix A the new matrix AT (read
“ A transpose”) is an n × m matrix.

• In MATLAB, the A’ command is used for transpose.

11

Exercise

>> A = [1 2 3; 5 6 7]

A =

 1 2 3

 5 6 7

>> A'

ans =

 1 5

 2 6

 3 7

>> B = [5 6 7 8]

B =

 5 6 7 8

>> B'

ans =

 5

 6

 7

 8

• What happens to a row vector when transposed?

• What happens to a column vector when transposed?

12

Useful Functions
length(A) Returns either the number of elements of A if A

is a vector or the largest value of m or n if A is an
m × n matrix

size(A) Returns a row vector [m n] containing the
sizes of the m × n matrix A.

max(A) For vectors, returns the largest element in A.
For matrices, returns a row vector containing the
maximum element from each column.

If any of the elements are complex, max(A)
returns the elements that have the largest
magnitudes.

[v,k] = max(A) Similar to max(A) but stores the maximum
values in the row vector v and their indices in

the row vector k.
min(A)

and
[v,k] = min(A)

Like max but returns minimum values.

13

More Useful Functions

sort(A) Sorts each column of the array A in ascending
order and returns an array the same size as A.

sort(A,DIM,MODE) Sort with two optional parameters:
 DIM selects a dimension along which to sort.
 MODE is sort direction ('ascend' or 'descend').

sum(A) Sums the elements in each column of the array A
and returns a row vector containing the sums.

sum(A,DIM) Sums along the dimension DIM.

14

Exercises
>> M = [1 6 4; 3 7 2]

>> size(M)

>> length(M)

>> max(M)

>> [a,b] = max(M)

>> sort(M)

>> sort(M, 1, 'descend')

>> sum(M)

>> sum(M, 2)

>> X = [4 9 2 5]

X =

 4 9 2 5

>> length(X)

ans =

 4

>> size(X)

ans =

 1 4

>> min(X)

ans =

 2

15

Solution
>> M = [1 6 4; 3 7 2]

M =

 1 6 4

 3 7 2

>> size(M)

ans =

 2 3

>> length(M)

ans =

 3

>> max(M)

ans =

 3 7 4

>> [a,b] = max(M)

a =

 3 7 4

b =

 2 2 1

>> sort(M)

ans =

 1 6 2

 3 7 4

>> sort(M, 1, 'descend')

ans =

 3 7 4

 1 6 2

>> sum(M)

ans =

 4 13 6

>> sum(M, 2)

ans =

 11

 12

16

Creating Big Matrices

• What if you want to create a Matrix that
contains 1000 element (or more)?

• Writing each element by hand is difficult,
time-consuming and error-prone.

• MATLAB allows simple ways to quickly
create matrices, such as:

• Using the colon : operator (very popular).

• Using linspace() and logspace()
functions (less popular, but useful).

18

Using the colon operator

• MATLAB command X = J:D:K

• In other words, it creates a vector X of values
starting at J, ending with K, and with spacing D.

• Notice that the last element is K if K - J is an
integer multiple of D. If not, the last value is less
than J.

• MATLAB command J:K is the same as J:1:K.
• Note:

– J:K is empty if J > K.
– J:D:K is empty if D == 0, if D > 0 and J > K, or if

D < 0 and J < K.

19

Example 1

>> x = 0:2:8

x =

 0 2 4 6 8

>> x = 0:2:7

x =

 0 2 4 6

>> x = 4:7

x =

 4 5 6 7

>> x = 7:2

x =

 Empty matrix: 1-by-0

20

Example 2

>> x = 7:-1:2

x =

 7 6 5 4 3 2

>> x = 5:0.1:5.9

x =

 Columns 1 through 5

 5.0000 5.1000 5.2000 5.3000 5.4000

 Columns 6 through 10

 5.5000 5.6000 5.7000 5.8000 5.9000

>> y = 5:0.1:5.9; % what happened here?!

>>

>> % now create a ‘column’ vector from 1 to 10 using :

21

Special: ones, zeros, rand
>> a = ones(2,4)

a =

 1 1 1 1

 1 1 1 1

>> b = zeros(4, 3) % null matrix

b =

 0 0 0

 0 0 0

 0 0 0

 0 0 0

>> c = rand(2, 4)

c =

 0.8147 0.1270 0.6324 0.2785

 0.9058 0.9134 0.0975 0.5469

% random values drawn from the standard

% uniform distribution on the open

% interval(0,1)

 24

Null and
Identity
Matrix

>> eye(4) % identity matrix

ans =

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> I = eye(3)

I =

 1 0 0

 0 1 0

 0 0 1

>> A*I

ans =

 1 2 3

 4 5 6

 7 8 9

 25

Matrix Determinant & Inverse

>> A = [1 2 3; 2 3 1; 3 2 1]

A =

 1 2 3

 2 3 1

 3 2 1

>> det(A) % determinant

ans =

 -12

>> inv(A) % inverse

ans =

 -0.0833 -0.3333 0.5833

 -0.0833 0.6667 -0.4167

 0.4167 -0.3333 0.0833

>> A^-1

ans =

 -0.0833 -0.3333 0.5833

 -0.0833 0.6667 -0.4167

 0.4167 -0.3333 0.0833

26

Accessing Matrix Elements

>> C = [10, 11, 13, 12, 19, 16, 17]

C =

 10 11 13 12 19 16 17

>> C(4)

ans =

 12

>> C(1,4)

ans =

 12

>> C(20)

??? Index exceeds matrix dimensions.

27

J

Notes

• Use () not [] to access matrix elements.

• The row and column indices are NOT zero-
based, like in C/C++.

• The first is row number, followed by the
column number.

• For matrices and vectors, you can use one of
three indexing methods: matrix row and
column indexing; linear indexing

• You can also use ranges (shown later).

28

Accessing Matrix Elements
>> M = [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0]

M =

 1 3 2 9

 6 7 8 1

 7 4 6 0

>> M(2, 3)

ans =

 8

>> M(3, 1)

ans =

 7

>> M(0, 1)

??? Subscript indices must either be real

positive integers or logicals.

>> M(9)

ans =

 6

 29

Matrix Linear Indexing

30

Indexing: Sub-matrix

• v(2:5) represents the second through fifth elements
– i.e., v(2), v(3), v(4), v(5).

• v(2:end) represents the second till last element of v.

• A(:,3) denotes all elements in the third column of matrix A.
• A(:,2:5) denotes all elements in the second through fifth

columns of A.
• A(2:3,1:3) denotes all elements in the second and third

rows that are also in the first through third columns.
• A(end,:) all elements of the last row in A.
• A(:,end) all elements of the last column in A.
• v = A(:) creates a vector v consisting of all the columns of A

stacked from first to last.

31

Exercise
>> v = 10:10:70

v =

 10 20 30 40 50 60 70

>> v(2:5)

ans =

 20 30 40 50

>> v(2:end)

ans =

 20 30 40 50 60 70

>> v(:)

ans =

 10

 20

 30

 40

 50

 60

 70

32

Exercise
>> A = [4 10 1 6 2; 8 1.2 9 4 25; 7.2 5 7 1

11; 0 0.5 4 5 56; 23 83 13 0 10]

A =

 4.0000 10.0000 1.0000 6.0000 2.0000

 8.0000 1.2000 9.0000 4.0000 25.0000

 7.2000 5.0000 7.0000 1.0000 11.0000

 0 0.5000 4.0000 5.0000 56.0000

 23.0000 83.0000 13.0000 0 0.0000

>> A(:,3)

ans =

 1

 9

 7

 4

 13

>> A(:,2:5)

ans =

 10.0000 1.0000 6.0000 2.0000

 1.2000 9.0000 4.0000 25.0000

 5.0000 7.0000 1.0000 11.0000

 0.5000 4.0000 5.0000 56.0000

 83.0000 13.0000 0 10.0000

>> A(2:3,1:3)

ans =

 8.0000 1.2000 9.0000

 7.2000 5.0000 7.0000

>> A(end,:)

ans =

 23 83 13 0 10

>> A(:,end)

ans =

 2

 25

 11

 56

 10

>> v = A(:)

v =

 4.0000

 8.0000

 7.2000

 0

 23.0000

 10.0000

 1.2000

 5.0000

 0.5000

 83.0000

 1.0000

 9.0000

 7.0000

 4.0000

 13.0000

 6.0000

 4.0000

 1.0000

 5.0000

 0

 2.0000

 25.0000

 11.0000

 56.0000

 10.0000

 33

Linear indexing is useful: find
>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> B = find(A > 5) % returns linear index

B =

 3

 6

 8

 9

>> A(B) % same as A(find(A > 5))

ans =

 7

 8

 6

 9

35

Extending Matrices

• You can add extra elements to a matrix by creating them
directly using ()

• Or by concatenating (appending) them using [,] or
[;]

• If you don’t assign array elements, MATLAB gives them
a default value of 0

>> h = [12 11 14 19 18 17]

h =

 12 11 14 19 18 17

>> h = [h 13]

h =

 12 11 14 19 18 17 13

>> h(10) = 1

h =

 12 11 14 19 18 17 13 0 0 1

40

Example
>> a = [2 4 20]

a =

 2 4 20

>> b = [9, -3, 6]

b =

 9 -3 6

>> [a b]

ans =

 2 4 20 9 -3 6

>> [a, b]

ans =

 2 4 20 9 -3 6

>> [a; b]

ans =

 2 4 20

 9 -3 6

 41

Functions on Arrays

• Standard MATLAB functions (sin, cos, exp, log, etc) can
apply to vectors and matrices as well as scalars.

• They operate on array arguments to produce an array
result the same size as the array argument x.

• These functions are said to be vectorized functions.
• In this example y is [sin(1), sin(2), sin(3)]
• So, when writing functions (later lectures) remember

input might be a vector or matrix.

>> x = [1, 2, 3]

x =

 1 2 3

>> y = sin(x)

y =

 0.8415 0.9093 0.1411

42

