Lecture 2: Variables, Vectors and Matrices in MATLAB

Variables in MATLAB

- Just like other programming languages, you can define variables in which to store values.
- All variables can by default hold matrices with scalar or complex numbers in them.
- You can define as many variables as your PC memory can hold.

Values in variables can be inspected, used and changed
Variable names are case-sensitive, and show up in the Workspace.

Variables

- You can change the value in the variable by over-writing it with a new value
- Remember that variables are case-sensitive (easy to make a mistake)
 Always left-to right >> variable = expression

```
>> a = 7
a =
      7
>> b = 12
b =
    12
>> b = 14
b =
    14
>> B = 88
B =
    88
>> c = a + b
с =
    21
>> c = a / b
с =
    0.5000
```


- Develop MATLAB code to find
 Cylinder volume and surface area.
- Assume radius of 5 m and height of 13 m.

Useful MATLAB commands

Command	Description
clc	Clears the Command window.
clear	Removes all variables from memory.
clear var1 var2	Removes the variables var1 and var2 from memory.

Vectors and Matrices (Arrays)

- So far we used MATLAB variables to store a single value.
- We can also create MATLAB arrays that hold multiple values
 - List of values (1D array) called **Vector**
 - Table of values (2D array) called **Matrix**
- Vectors and matrices are used extensively when solving engineering and science problems.

Row Vector

- Row vectors are special cases of matrices.
- This is a 7-element row vector $(1 \times 7 \text{ matrix})$.
- Defined by enclosing numbers within square brackets [] and separating them by , or a space.

Column Vector

- Column vectors are special cases of matrices.
- This is a 7-element column vector (7 × 1 matrix).
- Defined by enclosing numbers within [] and separating them by semicolon ;

```
>> R = [10; 11; 13; 12; 19; 16; 17]
R =
10
11
13
12
19
16
17
```


Matrix

- This is a 3×4 -element matrix.
- It has 3 rows and 4 columns (dimension 3×4).
- Spaces or commas separate elements in different columns, whereas semicolons separate elements in different rows.
- A dimension *n* × *n* matrix is called *square* matrix.

>> M	=	[1,	З,	2,	9;	6	,	7,	8,	1	;	7,	4,	6,	0]
M =															
	1		3		2			9							
	6		7		8			1							
	7		4		6			0							
>> M	=	[1	32	9;	6	7 8	8	1;	7	4	6	0]			
M =															
	1		3		2			9							
	6		7		8			1							
	7		4		6			0							

Transpose of a Matrix

- The transpose operation interchanges the rows and columns of a matrix.
- For an $m \times n$ matrix **A** the new matrix \mathbf{A}^T (read "A transpose") is an $n \times m$ matrix.
- In MATLAB, the A' command is used for transpose.

$$\mathbf{A} = \begin{bmatrix} -2 & 6 \\ -3 & 5 \end{bmatrix} \qquad \mathbf{A}^T = \begin{bmatrix} -2 & -3 \\ 6 & 5 \end{bmatrix}$$

What happens to a row vector when transposed?What happens to a column vector when transposed?

Useful Functions

length(A)	Returns either the number of elements of A if A is a vector or the largest value of <i>m</i> or <i>n</i> if A is an $m \times n$ matrix
size(A)	Returns a row vector $[m n]$ containing the sizes of the $m \times n$ matrix A.
max(A)	For vectors, returns the largest element in A. For matrices, returns a row vector containing the maximum element from each column.

More Useful Functions

sort(A)	Sorts each column of the array A in ascending order and returns an array the same size as A.

sum (A)Sums the elements in each column of the array A
and returns a row vector containing the sums.

>> size(M)

>> max(M)

$$>> [a,b] = max(M)$$

>> sort(M)

>> sum(M)

Creating Big Matrices

- What if you want to create a Matrix that contains 1000 element (or more)?
- Writing each element by hand is difficult, time-consuming and error-prone.
- MATLAB allows simple ways to quickly create matrices, such as:
- Using the colon : operator (very popular).

Using the colon operator

- MATLAB command X = J:D:K
- In other words, it creates a vector X of values **starting** at J, **ending** with K, and with **spacing** D.
- Notice that the last element is K if K J is an integer multiple of D. If not, the last value is *less than* J.
- MATLAB command J:K is the same as J:1:K.
- Note:
 - J:K is empty if J > K.
 - J:D:K is empty if D == 0, if D > 0 and J > K, or if D < 0 and J < K.</p>

Example 1

>> x = 0	:2:8				
x = 0	2	4	6	8	
>> x = 0	: 2 : 7				
x = 0	2	4	6		
>> x = 4	:7				
4	5	6	7		
>> x = 7	:2				(and the second
Empty	matrix	: 1-by	7-0		

Example 2

>> x = 7	: -1 : 2					
x =						
7	6	5	4	3	2	
>> x = 5	:0.1:5	.9				
X =	- 1 + h .					
5.00		5.1000	5.2	2000	5.3000	5.4000
Column 5.50	s 6 th: 00 .	rough 1 5.6000	05.	7000	5.8000	5.9000
L						
						21

Special: ones, zeros, rand

>> a = ones (2, 4)a = 1 1 1 1 1 1 1 >> b = zeros(4, 3)% null matrix b = 0 0 0 0 0 0 0 0 0 0 \cap 0 >> c = rand(2, 4)с = 0.8147 0.1270 0.6324 0.2785 0.9058 0.9134 0.0975 0.5469 % random values drawn from the standard % uniform distribution on the open % interval(0,1)

>> eye(4) % identity matrix ans = 0 0 1 0 0 1 $\left(\right)$ >> $A = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9]$ A =1 2 4 5 6 >> I = eye(3) T. = 0 1 0 >> A*I ans =

Null and dentity

0A = A0 = 0IA = AI = A

Matrix Determinant & Inverse

>> A = [1 2	3; 2 3 1;	3 2 1]
A =		
1 2	3	
2 3		
3 Z	L L	
>> det(A) % ans = -12	determina	nt
>> inv(A) % ans =	inverse	
-0.0833	-0.3333	0.5833
-0.0833	0.6667	-0.4167
0.4167	-0.3333	0.0833
>> A^-1 ans =		
-0.0833	-0.3333	0.5833
-0.0833	0.6667	-0.4167
0.4167	-0.3333	0.0833

<u>e do: 126 126 10 - </u>

Accessing Matrix Elements

>> C =	= [10,	11,	13,	12, 19,	16,	17]		
C = 1() 1	L1	13	12	19	16	17	
>> C(4 ans = 12	1) 2							
>> C(1 ans = 12	2,4)							A A
>> C(2 ??? Ir	20) ndex e	exceed	ds ma	ıtrix di	mens	ions.		

Notes

- Use () not [] to access matrix elements.
- The row and column indices are NOT zerobased, like in C/C++.
- The first is row number, followed by the column number.
- For matrices and vectors, you can use one of three indexing methods: matrix row and column indexing; linear indexing

Accessing Matrix Elements

```
>> M = [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0]
М =
    1 3 2
                    9
    6 7 8 1
      4 6 0
    7
>> M(2, 3)
ans =
    8
>> M(3, 1)
ans =
    7
>> M(0, 1)
??? Subscript indices must either be real
positive integers or logicals.
>> M(9)
ans =
    6
```


Indexing: Sub-matrix

- v (2:5) represents the second through fifth elements
 i.e., v(2), v(3), v(4), v(5).
- v(2:end) represents the second till last element of v.
- A(:, 3) denotes all elements in the third column of matrix A.
- A(:, 2:5) denotes all elements in the second through fifth columns of A.
- A(2:3,1:3) denotes all elements in the second and third rows that are also in the first through third columns.
- A(end, :) all elements of the last row in A.
- A(:, end) all elements of the last column in A.
- v = A(:) creates a vector v consisting of all the columns of A stacked from first to last.

>>	v = 10	:10:70					
v =	10	20	30	40	50	60	70
>>	v(2:5)						
ans	= 20	30	40	50			
>>	v(2:en	d)					
ans	= 20	30	40	50	60	70	
>>	v(:)						
ans	=						
	10						
	30						
	40						
	50						
	60 70						

	>> A(end,:)
	ans =
	23 83 13 0 10
Exercise	>> A(:,end)
	ans =
LX610186	2
	25
>> A = [4 10 1 6 2; 8 1.2 9 4 25; 7.2 5 7 1	11
11; 0 0.5 4 5 56; 23 83 13 0 10]	56
	10
A =	
4.0000 10.0000 1.0000 6.0000 2.0000	>> v = A(:)
8.0000 1.2000 9.0000 4.0000 25.0000	V =
7.2000 5.0000 7.0000 1.0000 11.0000	4.0000
0 0.5000 4.0000 5.0000 56.0000	8.0000
23.0000 83.0000 13.0000 0 0.0000	7.2000
	0
>> A(:,3)	23.0000
ans =	10.0000
1	1.2000
9	5.0000
7	0.5000
4	83.0000
13	1.0000
	9.0000
>> A(:,2:5)	7.0000
ans =	4.0000
10.0000 1.0000 6.0000 2.0000	13.0000
1.2000 9.0000 4.0000 25.0000	6.0000
5.0000 7.0000 1.0000 11.0000	4.0000
0.5000 4.0000 5.0000 56.0000	1.0000
83.0000 13.0000 0 10.0000	5.0000
	0
>> A(2:3,1:3)	2.0000
ans =	25.0000
	11.0000
8.0000 1.2000 9.0000	56.0000
7.2000 5.0000 7.0000	10.0000

Linear indexing is useful: find

>> A	=	[1 2	2 3	; 4	15	6	; 7	8	9]					
A =														
	1		2		3									
	4		5		6									
	/		8		9									
>> R	_	finc	A) [>	5)	0	r٩	+ 117	ng	line	ar	index		
B =		± ±110	~ (-	0,	0	тС	Cui		± ± 110		THGGW		
	3													
	6													
	8													
	9													
														13 m
													100	
														1

Extending Matrices

- You can add extra elements to a matrix by creating them directly using ()
- Or by concatenating (appending) them using [,] or
 [;]
- If you don't assign array elements, MATLAB gives them a default value of 0

>> h =
$$[12 \ 11 \ 14 \ 19 \ 18 \ 17]$$

h =
12 11 14 19 18 17
>> h = $[h \ 13]$
h =
12 11 14 19 18 17 13
>> h(10) = 1
h =
12 11 14 19 18 17 13 0 0 1

	E	xan	npl	e		
>> a = [2 4 20]		0		
a = 2	4	20				
>> b = [9, -3,	6]				
b = 9	-3	6				
>> [a b]						
ans = 2	4	20	9	-3	6	
>> [a, b]					
ans =						
2	4	20	9	-3	6	42.2
>> [a; b]					
ans =						V CHY
2	4	20				
9	-3	6				

Functions on Arrays

• Standard MATLAB functions (sin, cos, exp, log, etc) can apply to vectors and matrices as well as scalars.