
Lecture 3: Array Applications,
Cells, Structures & Script Files

Euclidean Vectors

• An Euclidean vector (or geometric vector, or
simply a vector) is a geometric entity that has
both magnitude and direction.

• In physics, vectors are used to represent
physical quantities that have both magnitude
and direction, such as force, acceleration,
electric field, etc.

• Vector algebra: adding and subtracting
vectors, multiplying vectors, scaling vectors,
etc.

2

Euclidean Vectors in MATLAB

• We specify a vector using
its Cartesian coordinates.

• Hence, the vector p can be
specified by three
components: x, y and z,
and can be written in
MATLAB as:

p = [x, y, z];

• MATLAB supports 2-D
and 3-D vectors, and even
higher dimensional ones.

3

Magnitude, Length, Absolute Value

• In MATLAB, length() of a
vector is not its magnitude.
It is the number of elements
in the vector.

• The absolute value of a
vector a is a vector whose
elements are the absolute
values of the elements of a.

• The magnitude of a vector is
its Euclidean norm or
geometric length as shown:

� � ��� � ��� � ���

� � ��
� � ��

� � ��
�

‖�‖ = �22 + �−4�2 + 52 = ��2 −4 5� 	 2

−4

5

 = 6.7082

4

>> a = [2, -4, 5]

a =

 2 -4 5

>> length(a)

ans =

 3

>> abs(a)

ans =

 2 4 5

>> sqrt(a*a') % magnitude

ans =

 6.7082

>> sqrt(sum(a.*a)) %magnitude

ans =

 6.7082

Vector Scaling

• For vector:
� � ��� � ��� � ���

• Scaling this vector by
a factor of 2 gives:

• � � 2�

� 2��� � 2��� � 2���

• This is just like
MATLAB scalar
multiplication of a
vector:

• v = 2*[x, y, z];

5

Adding and Subtracting Vectors

• Vector addition by
geometry: The
parallelogram law.

• Or, mathematically:
� � ��� � ��� � ���

� � 	�� � 	�� � 	��

� � � � �� � 	� �

� �� � 	� �

� �� � 	� �

• Same as vector addition
and subtraction in
MATLAB.

6

Exercise
>> a = [2 -4 6]

a =

 2 -4 6

>> b = [3 -1 -1]

b =

 3 -1 -1

>> c = a + b

c =

 5 -5 5

>> d = a - b

d =

 -1 -3 7

>> e = 2*a

e =

 4 -8 12

 7

Dot Product

• The dot product of
vectors results in a
scalar value.

• � ∙ �

� ���� � ���� � ����

� � � cos �

>> a = [2 -4 6];

>> b = [3 -1 -1];

>> c = a * b'

c =

 4

>> c = sum(a .* b)

c =

 4

>> c = dot(a, b)

c =

 4

8

Cross Product
>> a = [2 -4 6];

>> b = [3 -1 -1];

>> cross(a, b)

ans =

 10 20 10

>> syms x y z

>> det([x y z; 2 -4 6; 3 -1 -1])

ans =

 10*x + 20*y + 10*z

>> cross([1 0 0], [0 1 0])

ans =

 0 0 1

� � 	 � � 	 sin �

� � 	 �

� � �

�� �� ��

�� �� ��

� � 	 �
�� ��

�� ��
� �

�� ��
�� ��

� �
�� ��

�� ��
�

9

Complex
Numbers

10

>> a = 7 + 4j

a =

 7.0000 + 4.0000i

>> [theta, rho] = cart2pol(real(a), imag(a))

theta =

 0.5191

rho =

 8.0623

>> rho = abs(a) % magnitude of complex number

rho =

 8.0623

>> theta = atan2(imag(a), real(a))

theta =

 0.5191

% atan2 is four quadrant inverse tangent

>> b = 3 + 4j

b =

 3.0000 + 4.0000i

>> a+b

ans =

 10.0000 + 8.0000i

>> a*b

ans =

 5.0000 + 40.0000i

Polynomials

• A polynomial can be written in the form:
���� � �������� �⋯� ���� � ��� � ��

• Or more concisely:

�����

�

���

• We can use MATLAB to find all the roots
of the polynomial, i.e., the values of x that
makes the polynomial equation equal 0.

11

Exercise

>> a = [1 -7 40 -34];

>> roots(a)

ans =

3.0000 + 5.0000i

3.0000 - 5.0000i

1.0000

>> poly([1 3+5i 3-5i])

ans =

1 -7 40 -34

• Polynomial Roots:
x3 – 7x2 + 40x – 34 = 0

• Roots are x = 1, x = 3 ± 5i.

• We can also build
polynomial coefficients
from its roots.

• We can also multiply
(convolution) and divide
(deconvolution) two
polynomials.

12

Just for fun… Plot…

>> x = -2:0.01:5;

>> f = x.^3 - 7*(x.^2) + 40*x - 34;

>> plot(x, f)

-2 -1 0 1 2 3 4 5
-150

-100

-50

0

50

100

150

13

Cell Array

• The cell array is an array in which each
element is a cell. Each cell can contain an
array.

• So, it is an array of different arrays.
• You can store different classes of arrays in

each cell, allowing you to group data sets
that are related but have different
dimensions.

• You access cell arrays using the same
indexing operations used with ordinary
arrays, but using {} not ().

14

Useful functions

C = cell(n) Creates n × n cell array C of empty matrices.

C = cell(n,m) Creates n × m cell array C of empty matrices.

celldisp(C) Displays the contents of cell array C.

cellplot(C) Displays a graphical representation of the cell
array C.

C = num2cell(A) Converts a numeric array A into a cell array C.

iscell(C) Returns a 1 if C is a cell array; otherwise,
returns a 0.

15

Exercise
>> C = cell(3)

C =

 [] [] []

 [] [] []

 [] [] []

>> D = cell(1, 3)

D =

 [] [] []

>> A(1,1) = {'Walden Pond'};

>> A(1,2) = {[1+2i 5+9i]};

>> A(2,1) = {[60,72,65]};

>> A(2,2) = {[55,57,56;54,56,55;52,55,53]};

>> A

A =

 'Walden Pond' [1x2 double]

 [1x3 double] [3x3 double]

16

Exercise (Continue)
>> celldisp(A)

A{1,1} =

Walden Pond

A{2,1} =

 60 72 65

A{1,2} =

 1.0000 + 2.0000i 5.0000 + 9.0000i

A{2,2} =

 55 57 56

 54 56 55

 52 55 53

>> B = {[2,4], [6,-9;3,5]; [7;2], 10}

B =

 [1x2 double] [2x2 double]

 [2x1 double] [10]

>> B{1,2}

ans =

 6 -9

 3 5

 17

Structures (strcut.memebr)

18

Create and Add to Structure
>> student.name = 'John Smith';

>> student.SSN = '392-77-1786';

>> student.email = 'smithj@myschool.edu';

>> student.exam_scores = [67,75,84];

>> student

student =

 name: 'John Smith'

 SSN: '392-77-1786'

 email: 'smithj@myschool.edu'

 exam_scores: [67 75 84]

>> student(2).name = 'Mary Jones';

>> student(2).SSN = '431-56-9832';

>> student(2).email = 'jonesm@myschool.edu';

>> student(2).exam_scores = [84,78,93];

>> student

student =

1x2 struct array with fields:

 name

 SSN

 email

 exam_scores

 19

Investigate Structure
>> student(2)

ans =

 name: 'Mary Jones'

 SSN: '431-56-9832'

 email: 'jonesm@myschool.edu'

 exam_scores: [84 78 93]

>> fieldnames(student)

ans =

 'name'

 'SSN'

 'email'

 'exam_scores'

>> max(student(2).exam_scores)

ans =

 93

>> isstruct(student)

ans =

 1

20

Script files

• You can save a particular sequence of MATLAB
commands for reuse later in a script file (.m file)

• Each line is the same as typing a command in the
command window.

• From the main menu, select File | New | Script,
then save the file as mycylinder.m

21

Remember Example?

• Develop MATLAB
code to find Cylinder
volume and surface
area.

• Assume radius of 5 m
and height of 13 m.

� = ��
2
ℎ

� = 2��2 + 2��ℎ = 2���� + ℎ�

22

Solution

23

>> r = 5

r =

 5

>> h = 13

h =

 13

>> V = pi * r^2 * h

V =

 1.0210e+003

>> A = 2 * pi * r * (r + h)

A =

 565.4867

24

Exercise

Be ware…
• Script File names MUST begin with a letter, and

may include digits and the underscore character.
• Script File names should NOT:

– include spaces
– start with a number
– use the same name as a variable or an existing

command

• If you do any of the above you will get unusual
errors when you try to run your script.

• You can check to see if a command, function or
file name already exists by using the exist
command.

25

Running .m files

• Run sequence of
commands by typing

mycylinder

in the command
window

• Make sure the current
folder is set properly

26

>> mycylinder

r =

 5

h =

 13

V =

 1.0210e+003

A =

 565.4867

When you type mycylinder

When multiple commands have the same name in the current scope
(scope includes current file, optional private subfolder, current folder,
and the MATLAB path), MATLAB uses this precedence order:

1. Variables in current workspace: Hence, if you create a variable with
the same name as a function, MATLAB cannot run that function
until you clear the variable from memory.

2. Nested functions within current function

3. Local functions within current file

4. Functions in current folder

5. Functions elsewhere on the path, in order of appearance

Precedence of functions within the same folder depends on file type:

1. MATLAB built-in functions have precedence

2. Then Simulink models

3. Then program files with .m extension

27

Comments in MATLAB

• Comment lines start with a % not //
• Comments are not executed by MATLAB; it is

there for people reading the code.
• Helps people understand what the code is doing

and why!
• Comments are VERY IMPORTANT.
• Comment anything that is not easy to understand.
• Good commenting is a huge help when

maintaining/fixing/extending code.
• Header comments show up when typing the help

command.

28

Bad vs. Good Comments/Code

% set x to zero

x = 0

% calculate y

y = x * 9/5 + 32

% Convert freezing point of

% water from celsius to

% farenheit

c = 0

f = c * 9/5 + 32

29

Exercise

30

Header comments

>> help temperature

 temperature.m Convert the boiling point for

 water from degrees Celsius (C) to Farenheit (F)

 Author: Dr. Mohammed Hawa

>> temperature

C =

 100

F =

 212

31

Simple User Interaction: I/O

• Use input command to get input from
the user and store it in a variable:

h = input('Enter the height:')

• MATLAB will display the message
enclosed in quotes, wait for input and
then store the entered value in the variable

32

Simple User Interaction: I/O

• Use disp command to show something to
a user

disp('The area of the cylinder is: ')

disp(A)

• MATLAB will display any message
enclosed in quotes and then the value of
the variable.

33

Exercise

34

r = input('Enter the radius:');

h = input('Enter the height:');

V = pi * r^2 * h;

A = 2 * pi * r * (r + h);

disp('The volume of the cylinder is: ');

disp(V);

disp('The area of the cylinder is: ');

disp(A);

>> mycylinder

Enter the radius:5

Enter the height:13

The volume of the cylinder is:

 1.0210e+003

The area of the cylinder is:

 565.4867

Summary

35

Homework

• The speed v of a falling object dropped
with zero initial velocity is given as a
function of time t by � � ��, where g is the
gravitational acceleration.

• Plot v as a function of t for 0 ≪ � ≪ ��,

where tf is the final time entered by the
user.

• Use a script file with proper comments.

36

Solution

% Plot speed of a falling object

% Author: Dr. Mohammed Hawa

g = 9.81; % Acceleration in SI units

tf = input('Enter final time in seconds:');

t = [0:tf/500:tf]; % array of 501 time instants
v = g*t; % speed

plot(t,v);
xlabel('t (sseconds)');
ylabel('v m/s)');

37

Homework

• Solve as many problems from Chapter 2
as you can

• Suggested problems:

• 2.33, 2.34, 2.35, 2.36, 2.39, 2.41, 2.45, 2.48

38

