
Lecture 4: Complex Numbers
Functions, and Data Input

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

What is a Function?

• A MATLAB Function (e.g. y = func(x1, x2))
is like a script file, but with inputs and outputs
provided automatically in the commend window.

• In MATLAB, functions can take zero, one, two or
more inputs, and can provide zero, one, two or
more outputs.

• There are built-in functions (written by the
MATLAB team) and functions that you can define
(written by you and stored in .m file).

• Functions can be called from command line, from
wihtin a script, or from another function.

2

3

Functions are Helpful

• Enable “divide and conquer” strategy
– Programming task broken into smaller tasks

• Code reuse
– Same function useful for many problems

• Easier to debug
– Check right outputs returned for all possible

inputs

• Hide implementation
– Only interaction via inputs/outputs, how it is

done (implementation) hidden inside the
function.

4

Finding Useful Functions

• You can use the lookfor command to find
MATLAB functions that are relevant to your
application.

• Example: >> lookfor imaginary

• Gets a list of functions that deal with
imaginary numbers.

• i - Imaginary unit.

• j - Imaginary unit.

• complex - Construct complex result
from real and imaginary parts.

• imag - Complex imaginary part.

5

Calling Functions

• Function names are case sensitive (meshgrid,
meshGrid and MESHGRID are interpreted as
different functions).

• Inputs (called function arguments or function
parameters) can be either numbers or
variables.

• Inputs are passed into the function inside of
parentheses () separated by commas.

• We usually assign the output to variable(s) so
we can use it later. Otherwise it is assigned to
the built-in variable ans.

6

Rules

• To evaluate sin 2 in
MATLAB, we type
sin(2), not sin[2]

• For example
sin[x(2)] gives an
error even if x is
defined as an array.

• Inputs to functions in
MATLAB can be
sometimes arrays.

>> x = -3 + 4i;

>> mag_x = abs(x)

mag_x =

 5

>> mag_y = abs(6 - 8i)

mag_y =

 10

>> angle_x = angle(x)

angle_x =

 2.2143

>> angle(x)

ans =

 2.2143

>> x = [5,7,15]

x =

 5 7 15

>> y = sqrt(x)

y =

 2.2361 2.6458 3.8730

7

Function Composition

• Composition: Using a function as an
argument of another function

• Allowed in MATLAB.

• Just check the number and placement of
parentheses when typing such
expressions.

• sin(sqrt(x)+1)

• log(x.^2 + sin(5))

8

Which expression is correct?

• You want to find sin� � . What do you write?

• (sin(x))^2

• sin^2(x)

• sin^2x

• sin(x^2)

• sin(x)^2

• Solution: Only first and last expressions are
correct.

9

Trigonometric Functions

10

Hyperbolic functions

11

User-Defined Functions

• Functions must be saved to a file with .m extension.
• Filename (without the .m) must match EXACTLY

the function name.
• First line in the file must begin with a function

definition line that illustrates inputs and outputs.

function [output variables] = name(input variables)

• This line distinguishes a function M-file from a
script M-file.

• Output variables are enclosed in square brackets.
• Input variables must be enclosed with parentheses.

12

Functions Names

• Function names may only use
alphanumeric characters and the
underscore.

• Functions names should NOT:
– include spaces

– start with a number

– use the same name as an existing command

• Consider adding a header comment, just
under the function definition (for help).

13

Exercise: Your Own pol2cart

• Make sure you set you Current Folder to
Desktop (or where you saved the .m file).

14

Test your newly defined function

>> [a, b] = polar_to_cartesian(3, pi)

a =

 -3

b =

 3.6739e-016

>> polar_to_cartesian(3, pi)

ans =

 -3

>> [a, b] = polar_to_cartesian(3, pi/4)

a =

 2.1213

b =

 2.1213

>> [a, b] = polar_to_cartesian([3 3 3], [pi pi/4 pi/2])

a =

 -3.0000 2.1213 0.0000

b =

 0.0000 2.1213 3.0000

15

MATLAB has pol2cart
>> help pol2cart

 POL2CART Transform polar to Cartesian coordinates.

 [X,Y] = POL2CART(TH,R) transforms corresponding elements of data

 stored in polar coordinates (angle TH, radius R) to Cartesian

 coordinates X,Y. The arrays TH and R must the same size (or

 either can be scalar). TH must be in radians.

 [X,Y,Z] = POL2CART(TH,R,Z) transforms corresponding elements of

 data stored in cylindrical coordinates (angle TH, radius R, height

 Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be

 the same size (or any of them can be scalar). TH must be in radians.

 Class support for inputs TH,R,Z:

 float: double, single

 See also cart2sph, cart2pol, sph2cart.

 Reference page in Help browser

 doc pol2cart

16

Just like your code!
>> type pol2cart

function [x,y,z] = pol2cart(th,r,z)

%POL2CART Transform polar to Cartesian coordinates.

% [X,Y] = POL2CART(TH,R) transforms corresponding elements of data

% stored in polar coordinates (angle TH, radius R) to Cartesian

% coordinates X,Y. The arrays TH and R must the same size (or

% either can be scalar). TH must be in radians.

%

% [X,Y,Z] = POL2CART(TH,R,Z) transforms corresponding elements of

% data stored in cylindrical coordinates (angle TH, radius R, height

% Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be

% the same size (or any of them can be scalar). TH must be in radians.

%

% Class support for inputs TH,R,Z:

% float: double, single

%

% See also CART2SPH, CART2POL, SPH2CART.

% L. Shure, 4-20-92.

% Copyright 1984-2004 The MathWorks, Inc.

% $Revision: 5.9.4.2 $ $Date: 2004/07/05 17:02:08 $

x = r.*cos(th);

y = r.*sin(th);

17

Exercise: Spiral
>> r = linspace(0, 10, 20);

>> theta = linspace(0, 2*pi, 20);

>> [x, y] = polar_to_cartesian(r, theta);

>> plot(x,y);

18

Possible Cases
• One input:
function [o1, o2, o3] = myfunc(i1)

• Three inputs:
function [o1, o2, o3] = myfunc(i1, i2, i3)

• No inputs:
function [o1, o2, o3] = myfunc()

function [o1, o2, o3] = myfunc

• One output:
function [o1] = myfunc(i1, i2, i3)

function o1 = myfunc(i1, i2, i3)

• No output:
function [] = myfunc(i1, i2, i3)

function myfunc(i1, i2, i3)

19

Local Variables

• The variables x, y, u, z are local to the function
fun, so their values will not be available in the
workspace outside the function.

• See example below.

function z = fun(x,y)

u = 3*x;

z = u + 6*y.^2;

% return missing is fine at end of file

20

Example
>> x = 3;

>> b = 7;

>> q = fun(x, b);

>> x

x =

 3

>> y

??? Undefined function or variable 'y'.

>> u

??? Undefined function or variable 'u'.

>> z

??? Undefined function or variable 'z'.

>> q

q =

 303

 21

Exercise

function show_date

clear

clc

date

% how many inputs and outputs do we have?

22

Homework

function [dist, vel] = drop(vO, t)

% Compute the distance travelled and the
% velocity of a dropped object, from

% the initial velocity vO, and time t
% Author: Dr. Mohammed Hawa

g = 9.80665; % gravitational acceleration (m/s^2)

vel = g*t + vO;
dist = 0.5*g*t.^2 + vO*t;

>> t = 0:0.1:5;

>> [distance_dropped, velocity] = drop(10, t);

>> plot(t, velocity)

23

Local vs. Global Variables

• The variables inside a function are local. Their scope is
only inside the function that declares them.

• In other words, functions create their own workspaces.
• Function inputs are also created in this workspace

when the function starts.
• Functions do not know about any variables in any

other workspace.
• Function outputs are copied from the function

workspace when the function ends.
• Function workspaces are destroyed after the function

ends.
– Any variables created inside the function “disappear”

when the function ends.

24

Local vs. Global Variables

• You can, however, define global variables
if you want using the global keyword.

• Syntax: global a x q

• Global variables are available to the basic
workspace and to other functions that
declare those variables global (allowing
assignment to those variables from
multiple functions).

25

Subfunctions

• An M-file may contain more than one user-defined function.
• The first defined function in the file is called the primary

function, whose name is the same as the M-file name.
• All other functions in the file are called subfunctions. They can

serve as subroutines to the primary function.
• Subfunctions are normally “visible” only to the primary

function and other subfunctions in the same file; that is, they
normally cannot be called by programs or functions outside
the file.

• However, this limitation can be removed with the use of
function handles.

• We normally use the same name for the primary function and
its file, but if the function name differs from the file name, you
must use the file name to invoke the function.

26

Exercise

• The following example shows how the MATLAB
M-function mean can be superceded by our own
definition of the mean, one which gives the root-
mean square value.

function y = subfun_demo(a)

y = a - mean(a);

function w = mean(x)

w = sqrt(sum(x.^2))/length(x);

27

Example

• A sample session follows.

>>y = subfn_demo([4 -4])

y =

1.1716 -6.8284

• If we had used the MATLAB M-function mean, we would
have obtained a different answer; that is,

>>a = [4 -4];

>>b = a - mean(a)

b =

4 -4

28

