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 The Definition 
You know, it’s always a little scary when we devote a whole section just to the definition of 
something.  Laplace transforms (or just transforms) can seem scary when we first start looking at 
them.  However, as we will see, they aren’t as bad as they may appear at first. 
 
Before we start with the definition of the Laplace transform we need to get another definition out 
of the way. 
 
A function is called piecewise continuous on an interval if the interval can be broken into a finite 
number of subintervals on which the function is continuous on each open subinterval (i.e. the 
subinterval without its endpoints) and has a finite limit at the endpoints of each subinterval.  
Below is a sketch of a piecewise continuous function. 

 
In other words, a piecewise continuous function is a function that has a finite number of breaks in 
it and doesn’t blow up to infinity anywhere. 
 
Now, let’s take a look at the definition of the Laplace transform. 
 
Definition 

Suppose that f(t) is a piecewise continuous function.  The Laplace transform of f(t) is 
denoted ( ){ }f t  and defined as 

 ( ){ } ( )
0

stf t f t dt
∞ −= ∫ e  (1) 

 
There is an alternate notation for Laplace transforms.  For the sake of convenience we will often 
denote Laplace transforms as, 
 ( ){ } ( )f t F s=  
 
With this alternate notation, note that the transform is really a function of a new variable, s, and 
that all the t’s will drop out in the integration process. 
 
Now, the integral in the definition of the transform is called an improper integral and it would 
probably be best to recall how these kinds of integrals work before we actually jump into 
computing some transforms. 

01

Hussein
Text Box
Laplace Transforms



Differential Equations 

© 2007 Paul Dawkins 6 http://tutorial.math.lamar.edu/terms.aspx 
 

 
Example 1  If 0c ≠ , evaluate the following integral. 

 
0

ct dt
∞

∫ e  

Solution 
Remember that you need to convert improper integrals to limits as follows, 

 
0 0

lim
n

n

ct ctdt dt
∞

→∞
=∫ ∫e e  

 
Now, do the integral, then evaluate the limit. 

 

0 0

0

lim

1lim

1 1lim

n

n

n

n

n

ct ct

ct

cn

dt dt

c

c c

∞

→∞

→∞

→∞

=

 =  
 

 = − 
 

∫ ∫e e

e

e

 

 
Now, at this point, we’ve got to be careful.  The value of c will affect our answer.  We’ve already 
assumed that c was non-zero, now we need to worry about the sign of c.  If c is positive the 
exponential will go to infinity.  On the other hand, if c is negative the exponential will go to zero. 
 
So, the integral is only convergent (i.e. the limit exists and is finite) provided c<0.  In this case 
we get, 

 
0

1 provided 0ct dt c
c

∞
= − <∫ e  (2) 

 
Now that we remember how to do these, let’s compute some Laplace transforms.  We’ll start off 
with probably the simplest Laplace transform to compute. 
 
Example 2  Compute { }1 . 
 
Solution 
There’s not really a whole lot do here other than plug the function f(t) = 1 into (1) 

 { }
0

1 st dt
∞ −= ∫ e  

 
Now, at this point notice that this is nothing more than the integral in the previous example with 
c s= − .  Therefore, all we need to do is reuse (2) with the appropriate substitution.  Doing this 
gives, 

 { }
0

11 provided 0st dt s
s

∞ −= = − − <
−∫ e  

 
Or, with some simplification we have, 

 { } 11 provided 0s
s

= >  
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Notice that we had to put a restriction on s in order to actually compute the transform.  All 
Laplace transforms will have restrictions on s.  At this stage of the game, this restriction is 
something that we tend to ignore, but we really shouldn’t ever forget that it’s there. 
 
Let’s do another example. 
 
Example 3  Compute { }ate  
 
Solution 
Plug the function into the definition of the transform and do a little simplification. 

 { } ( )
0 0

a s tat st at dt dt
∞ ∞− −= =∫ ∫e e e e  

 
Once again, notice that we can use (2) provided c a s= − .  So let’s do this. 

 

{ } ( )
0

1 provided 0

1 provided 

a s tat dt

a s
a s

s a
s a

∞ −=

= − − <
−

= >
−

∫e e

 

 
Let’s do one more example that doesn’t come down to an application of (2). 
 
Example 4  Compute ( ){ }sin at . 
 
Solution 
Note that we’re going to leave it to you to check most of the integration here.  Plug the function 
into the definition.  This time let’s also use the alternate notation. 

 

( ){ } ( )

( )

( )
0

0

sin

sin

lim sin

st

n st

n

at F s

at dt

at dt

∞ −

−

→∞

=

=

=

∫

∫

e

e



 

 
Now, if we integrate by parts we will arrive at, 

 ( ) ( ) ( )
0

0

1lim cos cos
n

nst st

n

sF s at at dt
a a

− −

→∞

  = − −     
∫e e  

 
Now, evaluate the first term to simplify it a little and integrate by parts again on the integral.  
Doing this arrives at, 

 ( ) ( )( ) ( ) ( )
0

0

1 1lim 1 cos sin sin
n

nsn st st

n

s sF s an at at dt
a a a a

− − −

→∞

    = − − +       
∫e e e  

 
Now, evaluate the second term, take the limit and simplify. 
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( ) ( )( ) ( ) ( )

( )

( )

0

0

2

2 0

1 1lim 1 cos sin sin

1 sin

1 sin

nsn sn st

n

st

st

s sF s an an at dt
a a a a

s s at dt
a a a

s at dt
a a

− − −

→∞

∞ −

∞ −

  = − − +    
 = −  
 

= −

∫

∫

∫

e e e

e

e

 

 
Now, notice that in the limits we had to assume that s>0 in order to do the following two limits. 

 
( )
( )

lim cos 0

lim sin 0

sn

n
sn

n

an

an

−

→∞

−

→∞

=

=

e

e
 

 
Without this assumption, we get a divergent integral again.  Also, note that when we got back to 
the integral we just converted the upper limit back to infinity.  The reason for this is that, if you 
think about it, this integral is nothing more than the integral that we started with.  Therefore, we 
now get, 

 ( ) ( )
2

2

1 sF s F s
a a

= −  

 
Now, simply solve for F(s) to get, 

 ( ){ } ( ) 2 2sin provided 0aat F s s
s a

= = >
+

  

 
As this example shows, computing Laplace transforms is often messy. 
 
Before moving on to the next section, we need to do a little side note.  On occasion you will see 
the following as the definition of the Laplace transform. 

 ( ){ } ( )stf t f t dt
∞ −

−∞
= ∫ e  

 
Note the change in the lower limit from zero to negative infinity.  In these cases there is almost 
always the assumption that the function f(t) is in fact defined as follows, 

 ( ) ( )
0 if 0

if 0
t

f t
f t t

<
=  ≥

 

 
In other words, it is assumed that the function is zero if t<0.  In this case the first half of the 
integral will drop out since the function is zero and we will get back to the definition given in (1).  
A Heaviside function is usually used to make the function zero for t<0.  We will be looking at 
these in a later section. 
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 Laplace Transforms 
As we saw in the last section computing Laplace transforms directly can be fairly complicated.  
Usually we just use a table of transforms when actually computing Laplace transforms.  The table 
that is provided here is not an inclusive table, but does include most of the commonly used 
Laplace transforms and most of the commonly needed formulas pertaining to Laplace transforms. 
 
Before doing a couple of examples to illustrate the use of the table let’s get a quick fact out of the 
way. 
 
Fact 
Given f(t) and g(t) then, 
 ( ) ( ){ } ( ) ( )af t bg t a F s bG s+ = +  
for any constants a and b. 
 
In other words, we don’t worry about constants and we don’t worry about sums or differences of 
functions in taking Laplace transforms.  All that we need to do is take the transform of the 
individual functions, then put any constants back in and add or subtract the results back up. 
 
So, let’s do a couple of quick examples. 
 
Example 1  Find the Laplace transforms of the given functions. 

(a) ( ) 5 3 36 5 9t tf t t−= + + −e e    [Solution] 

(b) ( ) ( ) ( ) ( )4cos 4 9sin 4 2cos 10g t t t t= − +    [Solution] 

(c) ( ) ( ) ( )3sinh 2 3sin 2h t t t= +    [Solution] 

(d) ( ) ( ) ( )3 3cos 6 cos 6t tg t t t= + −e e    [Solution] 
 
Solution 
Okay, there’s not really a whole lot to do here other than go to the table, transform the individual 
functions up, put any constants back in and then add or subtract the results. 
 
We’ll do these examples in a little more detail than is typically used since this is the first time 
we’re using the tables. 
 
(a) ( ) 5 3 36 5 9t tf t t−= + + −e e  

( ) ( ) 3 1

4

1 1 3! 16 5 9
5 3

6 1 30 9
5 3

F s
s s s s

s s s s

+= + + −
− − −

= + + −
+ −

 

[Return to Problems] 
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(b) ( ) ( ) ( ) ( )4cos 4 9sin 4 2cos 10g t t t t= − +  

( )
( ) ( ) ( )2 2 22 2 2

2 2 2

44 9 2
4 4 10

4 36 2
16 16 100

s sG s
s s s

s s
s s s

= − +
+ + +

= − +
+ + +

 

[Return to Problems] 
 

(c) ( ) ( ) ( )3sinh 2 3sin 2h t t t= +  

( )
( ) ( )2 22 2

2 2

2 23 3
2 2

6 6
4 4

H s
s s

s s

= +
− +

= +
− +

 

[Return to Problems] 
 
(d) ( ) ( ) ( )3 3cos 6 cos 6t tg t t t= + −e e  

( )
( ) ( ) ( )

( )

2 2 22

22

1 3
3 6 3 6

1 3
3 36 3 36

s sG s
s s s

s s
s s s

−
= + −

− + − +

−
= + −

− + − +

 

[Return to Problems] 
 
Make sure that you pay attention to the difference between a “normal” trig function and 
hyperbolic functions.  The only difference between them is the “+ a2” for the “normal” trig 
functions becomes a “- a2” in the hyperbolic function!  It’s very easy to get in a hurry and not pay 
attention and grab the wrong formula.  If you don’t recall the definition of the hyperbolic 
functions see the notes for the table. 
 
Let’s do one final set of examples. 
 
Example 2  Find the transform of each of the following functions. 

(a) ( ) ( )cosh 3f t t t=    [Solution] 

(b) ( ) ( )2 sin 2h t t t=    [Solution] 

(c) ( )
3
2g t t=    [Solution] 

(d) ( ) ( )
3
210f t t=    [Solution] 

(e) ( ) ( )f t tg t′=    [Solution] 
Solution 
(a)  ( ) ( )cosh 3f t t t=  
 
This function is not in the table of Laplace transforms.  However we can use #30 in the table to 
compute its transform.  This will correspond to #30 if we take n=1. 
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( ) ( ){ } ( ) ( ) ( ), where cosh 3F s tg t G s g t t′= = − =  
 
So, we then have, 

 ( ) ( )
( )

2

22 2

9
9 9

s sG s G s
s s

+′= = −
− −

 

Using #30 we then have, 

 ( )
( )

2

22

9

9

sF s
s

+
=

−
 

[Return to Problems] 
(b) ( ) ( )2 sin 2h t t t=  
 
This part will also use #30 in the table.  In fact we could use #30 in one of two ways.  We could 
use it with 1n = . 
 ( ) ( ){ } ( ) ( ) ( ), where sin 2H s tf t F s f t t t′= = − =  
 
Or we could use it with 2n = . 
 ( ) ( ){ } ( ) ( ) ( )2 , where sin 2H s t f t F s f t t′′= = =  
 
Since it’s less work to do one derivative, let’s do it the first way.  So using #9 we have, 

 ( )
( )

( )
( )

2

2 32 2

4 12 16

4 4

s sF s F s
s s

−′= = −
+ +

 

The transform is then, 

 ( )
( )

2

32

12 16

4

sH s
s

−
=

+
 

[Return to Problems] 

(c) ( )
3
2g t t=  

 
This part can be done using either #6 (with 2n = ) or #32 (along with #5).  We will use #32 so 
we can see an example of this.  In order to use #32 we’ll need to notice that 

 
3 3
2 2

0 0

2 3
3 2

t t
v dv t t v dv= ⇒ =∫ ∫  

Now, using #5, 

 ( ) ( ) 3
22

f t t F s
s
π

= =  

we get the following. 

 ( ) 53
22

3 1 3
2 42

G s
s ss

π π  = =     
 

 
This is what we would have gotten had we used #6. 

[Return to Problems] 
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(d) ( ) ( )
3
210f t t=  

 
For this part we will use #24 along with the answer from the previous part.  To see this note that 
if 

 ( )
3
2g t t=  

then 
 ( ) ( )10f t g t=  
 
Therefore, the transform is. 

 

( )

5
2

3
2

5
2

1
10 10

1 3
10

4
10

310
4

sF s G

s

s

π

π

 =  
 

 
 
 =        

=

 

[Return to Problems] 
 
(e)  ( ) ( )f t tg t′=  
 
This final part will again use #30 from the table as well as #35. 

 

( ){ } { }

( ) ( ){ }
( ) ( )( )
( ) ( )

0

0

dtg t g
ds
d sG s g
ds
G s sG s

G s sG s

′ ′= −

= − −

′= − + −

′= − −

 

 

 
Remember that g(0) is just a constant so when we differentiate it we will get zero! 

[Return to Problems] 
 
As this set of examples has shown us we can’t forget to use some of the general formulas in the 
table to derive new Laplace transforms for functions that aren’t explicitly listed in the table! 
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 Inverse Laplace Transforms 
Finding the Laplace transform of a function is not terribly difficult if we’ve got a table of 
transforms in front of us to use as we saw in the last section.  What we would like to do now is go 
the other way. 
 
We are going to be given a transform, F(s), and ask what function (or functions) did we have 
originally.  As you will see this can be a more complicated and lengthy process than taking 
transforms.  In these cases we say that we are finding the Inverse Laplace Transform of F(s) 
and use the following notation. 
 ( ) ( ){ }1f t F s−=   
 
As with Laplace transforms, we’ve got the following fact to help us take the inverse transform. 
 
Fact 
Given the two Laplace transforms F(s) and G(s) then 
 ( ) ( ){ } ( ){ } ( ){ }1 1 1aF s bG s a F s b G s− − −+ = +    
for any constants a and b. 
 
So, we take the inverse transform of the individual transforms, put any constants back in and then 
add or subtract the results back up. 
 
Let’s take a look at a couple of fairly simple inverse transforms. 
 
Example 1  Find the inverse transform of each of the following. 

(a) ( ) 6 1 4
8 3

F s
s s s

= − +
− −

   [Solution] 

(b) ( ) 5

19 1 7
2 3 5

H s
s s s

= − +
+ −

   [Solution] 

(c) ( ) 2 2

6 3
25 25

sF s
s s

= +
+ +

   [Solution] 

(d) ( ) 2 2

8 3
3 12 49

G s
s s

= +
+ −

   [Solution] 

 
Solution 
I’ve always felt that the key to doing inverse transforms is to look at the denominator and try to 
identify what you’ve got based on that.  If there is only one entry in the table that has that 
particular denominator, the next step is to make sure the numerator is correctly set up for the 
inverse transform process.  If it isn’t, correct it (this is always easy to do) and then take the 
inverse transform. 
 
If there is more than one entry in the table that has a particular denominator, then the numerators 
of each will be different, so go up to the numerator and see which one you’ve got.  If you need to 
correct the numerator to get it into the correct form and then take the inverse transform. 
 
So, with this advice in mind let’s see if we can take some inverse transforms. 
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(a) ( ) 6 1 4
8 3

F s
s s s

= − +
− −

 

 
From the denominator of the first term it looks like the first term is just a constant.  The correct 
numerator for this term is a “1” so we’ll just factor the 6 out before taking the inverse transform.  
The second term appears to be an exponential with a = 8 and the numerator is exactly what it 
needs to be.  The third term also appears to be an exponential, only this time 3a =  and we’ll 
need to factor the 4 out before taking the inverse transforms. 
 
So, with a little more detail than we’ll usually put into these, 

 

( )

( ) ( ) ( )8 3

8 3

1 1 16 4
8 3

6 1 4

6 4

t t

t t

F s
s s s

f t

= − +
− −

= − +

= − +

e e

e e

 

[Return to Problems] 

(b)  ( ) 5

19 1 7
2 3 5

H s
s s s

= − +
+ −

 

 
The first term in this case looks like an exponential with 2a = −  and we’ll need to factor out the 
19.  Be careful with negative signs in these problems, it’s very easy to lose track of them. 
 
The second term almost looks like an exponential, except that it’s got a 3s instead of just an s in 
the denominator.  It is an exponential, but in this case we’ll need to factor a 3 out of the 
denominator before taking the inverse transform. 
 
The denominator of the third term appears to be #3 in the table with 4n = .  The numerator 
however, is not correct for this.  There is currently a 7 in the numerator and we need a 4! = 24 in 
the numerator.  This is very easy to fix.  Whenever a numerator is off by a multiplicative 
constant, as in this case, all we need to do is put the constant that we need in the numerator.  We 
will just need to remember to take it back out by dividing by the same constant. 
 
So, let’s first rewrite the transform. 

 
( ) ( ) ( )

( )

4!
4!

4 15
3

4 15
3

719 1
2 3
1 1 1 7 4!19

2 3 4!

H s
s s s

s s s

+

+

= − +
− − −

= − +
− − −

 

 
So, what did we do here?  We factored the 19 out of the first term.  We factored the 3 out of the 
denominator of the second term since it can’t be there for the inverse transform and in the third 
term we factored everything out of the numerator except the 4! since that is the portion that we 
need in the numerator for the inverse transform process. 
 
Let’s now take the inverse transform. 

 ( )
5
32 41 719

3 24
tth t t−= − +e e  

[Return to Problems] 
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(c)  ( ) 2 2

6 3
25 25

sF s
s s

= +
+ +

 

 
In this part we’ve got the same denominator in both terms and our table tells us that we’ve either 
got #7 or #8.  The numerators will tell us which we’ve actually got.  The first one has an s in the 
numerator and so this means that the first term must be #8 and we’ll need to factor the 6 out of 
the numerator in this case.  The second term has only a constant in the numerator and so this term 
must be #7, however, in order for this to be exactly #7 we’ll need to multiply/divide a 5 in the 
numerator to get it correct for the table. 
 
The transform becomes, 

 

( )
( ) ( )

( ) ( )

5
5

2 22 2

2 22 2

36
5 5

3 56
55 5

sF s
s s

s
s s

= +
+ +

= +
+ +

 

 
Taking the inverse transform gives, 

 ( ) ( ) ( )36cos 5 sin 5
5

f t t t= +  

[Return to Problems] 
 

(d)  ( ) 2 2

8 3
3 12 49

G s
s s

= +
+ −

 

 
In this case the first term will be a sine once we factor a 3 out of the denominator, while the 
second term appears to be a hyperbolic sine (#17).  Again, be careful with the difference between 
these two.  Both of the terms will also need to have their numerators fixed up.  Here is the 
transform once we’re done rewriting it. 

 
( )

( )( )
( ) ( )

2 2

7
7

2 22 2

1 8 3
3 4 49

4 2 31
3 2 7

G s
s s

s s

= +
+ −

= +
+ −

 

 
Notice that in the first term we took advantage of the fact that we could get the 2 in the numerator 
that we needed by factoring the 8.  The inverse transform is then, 

 ( ) ( ) ( )4 3sin 2 sinh 7
3 7

g t t t= +  

[Return to Problems] 
 
So, probably the best way to identify the transform is by looking at the denominator.  If there is 
more than one possibility use the numerator to identify the correct one.   Fix up the numerator if 
needed to get it into the form needed for the inverse transform process.  Finally, take the inverse 
transform. 
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Let’s do some slightly harder problems.  These are a little more involved than the first set. 
 
Example 2  Find the inverse transform of each of the following. 

(a) ( ) 2

6 5
7

sF s
s
−

=
+

   [Solution] 

(b) ( ) 2

1 3
8 21

sF s
s s

−
=

+ +
   [Solution] 

(c) ( ) 2

3 2
2 6 2

sG s
s s

−
=

− −
   [Solution] 

(d) ( ) 2

7
3 10

sH s
s s

+
=

− −
   [Solution] 

 
Solution 

(a)  ( ) 2

6 5
7

sF s
s
−

=
+

 

 
From the denominator of this one it appears that it is either a sine or a cosine.  However, the 
numerator doesn’t match up to either of these in the table.  A cosine wants just an s in the 
numerator with at most a multiplicative constant, while a sine wants only a constant and no s in 
the numerator.   
 
We’ve got both in the numerator.  This is easy to fix however.  We will just split up the transform 
into two terms and then do inverse transforms. 

 
( )

( ) ( ) ( )

7
7

2 2

56
7 7

56cos 7 sin 7
7

sF s
s s

f t t t

= −
+ +

= −
 

 
Do not get too used to always getting the perfect squares in sines and cosines that we saw in the 
first set of examples.  More often than not (at least in my class) they won’t be perfect squares! 

[Return to Problems] 
 

(b)  ( ) 2

1 3
8 21

sF s
s s

−
=

+ +
 

 
In this case there are no denominators in our table that look like this.  We can however make the 
denominator look like one of the denominators in the table by completing the square on the 
denominator.  So, let’s do that first. 

 

( )

2 2

2

2

8 21 8 16 16 21
8 16 5

4 5

s s s s
s s

s

+ + = + + − +

= + + +

= + +

 

 
Recall that in completing the square you take half the coefficient of the s, square this, and then 
add and subtract the result to the polynomial.  After doing this the first three terms should factor 
as a perfect square. 
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So, the transform can be written as the following. 

 ( )
( )2

1 3
4 5

sF s
s

−
=

+ +
 

 
Okay, with this rewrite it looks like we’ve got #19 and/or #20’s from our table of transforms.  
However, note that in order for it to be a #19 we want just a constant in the numerator and in 
order to be a #20 we need an s – a in the numerator.  We’ve got neither of these so we’ll have to 
correct the numerator to get it into proper form. 
 
In correcting the numerator always get the s – a first.  This is the important part.  We will also 
need to be careful of the 3 that sits in front of the s.  One way to take care of this is to break the 
term into two pieces, factor the 3 out of the second and then fix up the numerator of this term.  
This will work, however it will put three terms into our answer and there are really only two 
terms.   
 
So, we will leave the transform as a single term and correct it as follows, 

 

( ) ( )
( )
( )

( )
( )

( )

2

2

2

1 3 4 4
4 5

1 3 4 12
4 5

3 4 13
4 5

s
F s

s

s
s

s
s

− + −
=

+ +

− + +
=

+ +

− + +
=

+ +

 

 
We needed an s + 4 in the numerator, so we put that in.  We just needed to make sure and take 
the 4 back out by subtracting it back out.  Also, because of the 3 multiplying the s we needed to 
do all this inside a set of parenthesis.  Then we partially multiplied the 3 through the second term 
and combined the constants.  With the transform in this form, we can break it up into two 
transforms each of which are in the tables and so we can do inverse transforms on them, 

 
( )

( ) ( )

( ) ( ) ( )

5
5

2 2

4 4

1343
4 5 4 5

133 cos 5 sin 5
5

t t

sF s
s s

f t t t− −

+
= − +

+ + + +

= − +e e

 

[Return to Problems] 
 

(c)  ( ) 2

3 2
2 6 2

sG s
s s

−
=

− −
 

 
This one is similar to the last one.  We just need to be careful with the completing the square 
however.  The first thing that we should do is factor a 2 out of the denominator, then complete the 
square.  Remember that when completing the square a coefficient of 1 on the s2 term is needed!  
So, here’s the work for this transform. 
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( ) ( )

( )

2

2 9 9
4 4

23 13
2 4

3 2
2 3 1

1 3 2
2 3 1
1 3 2
2

sG s
s s

s
s s

s
s

−
=

− −

−
=

− + − −

−
=

− −

 

 
So, it looks like we’ve got #21 and #22 with a corrected numerator.  Here’s the work for that and 
the inverse transform. 

 

( ) ( )
( )
( )

( )
( )

( ) ( )

( )
3 3
2 2

3 3
2 2

23 13
2 4

3 5
2 2
23 13

2 4

1353
22 13

2 23 13 3 13
2 4 2 4

3 21
2

31
2

31
2

1 13 5 133 cosh sinh
2 2 213

t t

s
G s

s

s
s

s
s s

g t t t

− + −
=

− −

− +
=

− −

 −
 = +
 − − − − 
    

= +            
e e

 

 
In correcting the numerator of the second term, notice that I only put in the square root since we 
already had the “over 2” part of the fraction that we needed in the numerator. 

[Return to Problems] 
 

(d)  ( ) 2

7
3 10

sH s
s s

+
=

− −
 

 
This one appears to be similar to the previous two, but it actually isn’t.  The denominators in the 
previous two couldn’t be easily factored.  In this case the denominator does factor and so we need 
to deal with it differently.  Here is the transform with the factored denominator. 

 ( ) ( )( )
7

2 5
sH s

s s
+

=
+ −

 

 
The denominator of this transform seems to suggest that we’ve got a couple of exponentials, 
however in order to be exponentials there can only be a single term in the denominator and no s’s 
in the numerator. 
 
To fix this we will need to do partial fractions on this transform.  In this case the partial fraction 
decomposition will be 

 ( )
2 5

A BH s
s s

= +
+ −

 

 
Don’t remember how to do partial fractions?  In this example we’ll show you one way of getting 
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the values of the constants and after this example we’ll review how to get the correct form of the 
partial fraction decomposition. 
 
Okay, so let’s get the constants.  There is a method for finding the constants that will always 
work, however it can lead to more work than is sometimes required.  Eventually, we will need 
that method, however in this case there is an easier way to find the constants. 
 
Regardless of the method used, the first step is to actually add the two terms back up.  This gives 
the following. 

 
( )( )

( ) ( )
( )( )

5 27
2 5 2 5

A s B ss
s s s s

− + ++
=

+ − + −
 

 
Now, this needs to be true for any s that we should choose to put in.  So, since the denominators 
are the same we just need to get the numerators equal.  Therefore, set the numerators equal. 
 ( ) ( )7 5 2s A s B s+ = − + +  
 
Again, this must be true for ANY value of s that we want to put in.  So, let’s take advantage of 
that.  If it must be true for any value of s then it must be true for 2s = − , to pick a value at 
random.  In this case we get, 

 ( ) ( ) 55 7 0
7

A B A= − + ⇒ = −  

 
We found A by appropriately picking s.  We can B in the same way if we chose 5s = . 

 ( ) ( ) 1212 0 7
7

A B B= + ⇒ =  

 
This will not always work, but when it does it will usually simplify the work considerably. 
 
So, with these constants the transform becomes, 

 ( )
5 12
7 7

2 5
H s

s s
−

= +
+ −

 

 
We can now easily do the inverse transform to get, 

 ( ) 2 55 12
7 7

t th t −= − +e e  

[Return to Problems] 
 
The last part of this example needed partial fractions to get the inverse transform.  When we 
finally get back to differential equations and we start using Laplace transforms to solve them, you 
will quickly come to understand that partial fractions are a fact of life in these problems.  Almost 
every problem will require partial fractions to one degree or another. 
 
Note that we could have done the last part of this example as we had done the previous two parts.  
If we had we would have gotten hyperbolic functions.  However, recalling the definition of the 
hyperbolic functions we could have written the result in the form we got from the way we worked 
our problem.  However, most students have a better feel for exponentials than they do for 
hyperbolic functions and so it’s usually best to just use partial fractions and get the answer in 
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terms of exponentials.  It may be a little more work, but it will give a nicer (and easier to work 
with) form of the answer. 
 
Be warned that in my class I’ve got a rule that if the denominator can be factored with integer 
coefficients then it must be. 
 
So, let’s remind you how to get the correct partial fraction decomposition.  The first step is to 
factor the denominator as much as possible.  Then for each term in the denominator we will use 
the following table to get a term or terms for our partial fraction decomposition. 
 
 

Factor in 
denominator 

Term in partial 
fraction decomposition 

ax b+  
A

ax b+
 

( )kax b+  ( ) ( )
1 2

2
k

k
AA A

ax b ax b ax b
+ + +

+ + +
  

2ax bx c+ +  2

Ax B
ax bx c

+
+ +

 

( )2 k
ax bx c+ +  ( ) ( )

1 1 2 2
22 2 2

k k
k

A x BA x B A x B
ax bx c ax bx c ax bx c

++ +
+ + +

+ + + + + +
  

 
Notice that the first and third cases are really special cases of the second and fourth cases 
respectively. 
 
So, let’s do a couple more examples to remind you how to do partial fractions. 
 
Example 3  Find the inverse transform of each of the following. 

(a) ( ) ( )( )( )
86 78

3 4 5 1
sG s

s s s
−

=
+ − −

   [Solution] 

(b) ( )
( )( )2

2 5
6 11

sF s
s s

−
=

− +
   [Solution] 

(c) ( ) ( )3 2

25
4 5

G s
s s s

=
+ +

   [Solution] 

 
Solution 

(a)  ( ) ( )( )( )
86 78

3 4 5 1
sG s

s s s
−

=
+ − −

 

 
Here’s the partial fraction decomposition for this part. 

 ( )
3 4 5 1

A B CG s
s s s

= + +
+ − −

 

 
Now, this time we won’t go into quite the detail as we did in the last example.  We are after the 

16



Differential Equations 

© 2007 Paul Dawkins 21 http://tutorial.math.lamar.edu/terms.aspx 
 

numerator of the partial fraction decomposition and this is usually easy enough to do in our 
heads.  Therefore, we will go straight to setting numerators equal. 
 ( )( ) ( )( ) ( )( )86 78 4 5 1 3 5 1 3 4s A s s B s s C s s− = − − + + − + + −  
 
As with the last example, we can easily get the constants by correctly picking values of s. 

 

( )( )

( )( )

3 336 7 16 3

1 304 16 19 5
5 5 5 5
4 266 7 19 2

s A A

s C C

s B B

= − − = − − ⇒ = −

  = − = − ⇒ =  
  

= = ⇒ =

 

 
So, the partial fraction decomposition for this transform is, 

 ( ) 3 2 5
3 4 5 1

G s
s s s

= − + +
+ − −

 

 
Now, in order to actually take the inverse transform we will need to factor a 5 out of the 
denominator of the last term.  The corrected transform as well as its inverse transform is. 

 
( )

( ) 5

1
5

3 4

3 2 1
3 4

3 2
tt t

G s
s s s

g t −

= − + +
+ − −

= − + +e e e
 

[Return to Problems] 
 

(b)  ( )
( )( )2

2 5
6 11

sF s
s s

−
=

− +
 

 
So, for the first time we’ve got a quadratic in the denominator.  Here’s the decomposition for this 
part. 

 ( ) 26 11
A Bs CF s

s s
+

= +
− +

 

 
Setting numerators equal gives, 
 ( ) ( )( )22 5 11 6s A s Bs C s− = + + + −  
 
Okay, in this case we could use 6s =  to quickly find A, but that’s all it would give.  In this case 
we will need to go the “long” way around to getting the constants.  Note that this way will always 
work, but is sometimes more work than is required. 
 
The “long” way is to completely multiply out the right side and collect like terms. 

 

( ) ( )( )

( ) ( )

2

2 2

2

2 5 11 6

11 6 6
6 11 6

s A s Bs C s

As A Bs B Cs C
A B s B C s A C

− = + + + −

= + + − + −

= + + − + + −

 

 
In order for these two to be equal the coefficients of the s2, s and the constants must all be equal.  
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So, setting coefficients equal gives the following system of equations that can be solved. 

 

2

1

0

: 0
28 28 67: 6 5 , ,
47 47 47

: 11 6 2

s A B
s B C A B C
s A C

+ =
− + = − ⇒ = − = = −
− = 

 

 
Notice that I used s0 to denote the constants.  This is habit on my part and isn’t really required, 
it’s just what I’m used to doing.  Also, the coefficients are fairly messy fractions in this case.  Get 
used to that.  They will often be like this when we get back into solving differential equations. 
 
There is a way to make our life a little easier as well with this.  Since all of the fractions have a 
denominator of 47 we’ll factor that out as we plug them back into the decomposition.  This will 
make dealing with them much easier.  The partial fraction decomposition is then, 

 

( ) 2

11
11

2 2

1 28 28 67
47 6 11

671 28 28
47 6 11 11

sF s
s s

s
s s s

− = − + − + 
 

= − + −  − + + 

 

 
The inverse transform is then. 

 ( ) ( ) ( )61 6728 28cos 11 sin 11
47 11

tf t t t = − + − 
 

e  

[Return to Problems] 
 

(c)  ( ) ( )3 2

25
4 5

G s
s s s

=
+ +

 

 
With this last part do not get excited about the s3.  We can think of this term as 
 ( )33 0s s= −  
and it becomes a linear term to a power.  So, the partial fraction decomposition is 

 ( ) 2 3 2 4 5
A B C Ds EG s
s s s s s

+
= + + +

+ +
 

 
Setting numerators equal and multiplying out gives. 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 3

4 3 2

25 4 5 4 5 4 5

4 5 4 5 4 5

As s s Bs s s C s s Ds E s

A D s A B E s A B C s B C s C

= + + + + + + + + + +

= + + + + + + + + + +
 

 
Setting coefficients equal gives the following system. 
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4

3

2

1

0

: 0
: 4 0

11 11 24, 4, 5, ,: 5 4 0
5 5 5

: 5 4 0
: 5 25

s A D
s A B E

A B C D Es A B C
s B C
s C

+ =
+ + =  ⇒ = = − = = − = −+ + = 
+ = 
= 

 

 
This system looks messy, but it’s easier to solve than it might look.  First we get C for free from 
the last equation.  We can then use the fourth equation to find B.  The third equation will then 
give A, etc. 
 
When plugging into the decomposition we’ll get everything with a denominator of 5, then factor 
that out as we did in the previous part in order to make things easier to deal with. 

 ( ) 2 3 2

1 11 20 25 11 24
5 4 5

sG s
s s s s s

+ = − + − + + 
 

 
Note that we also factored a minus sign out of the last two terms.  To complete this part we’ll 
need to complete the square on the later term and fix up a couple of numerators.  Here’s that 
work. 

 

( )

( )
( )

( )
( ) ( )

2 3 2

22 3

2!
2!

2 22 3

1 11 20 25 11 24
5 4 5

11 2 2 241 11 20 25
5 2 1

11 2251 11 20 2
5 2 1 2 1

sG s
s s s s s

s
s s s s

s
s s s s s

+ = − + − + + 
 + − +

= − + − 
 + + 
 +

= − + − − 
 + + + + 

 

 
The inverse transform is then. 

 ( ) ( ) ( )2 2 21 2511 20 11 cos 2 sin
5 2

t tg t t t t t− − = − + − − 
 

e e  

[Return to Problems] 
 
So, one final time.  Partial fractions are a fact of life when using Laplace transforms to solve 
differential equations.  Make sure that you can deal with them.   
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 Solving IVP’s with Laplace Transforms 
It’s now time to get back to differential equations.  We’ve spent the last three sections learning 
how to take Laplace transforms and how to take inverse Laplace transforms.  These are going to 
be invaluable skills for the next couple of sections so don’t forget what we learned there. 
 
Before proceeding into differential equations we will need one more formula.  We will need to 
know how to take the Laplace transform of a derivative.  First recall that f(n) denotes the nth 
derivative of the function f.  We now have the following fact. 
 
Fact 
Suppose that f, f’, f”,…f(n-1) are all continuous functions and f(n) is a piecewise continuous 
function.  Then, 

 ( ){ } ( ) ( ) ( ) ( ) ( ) ( ) ( )2 11 20 0 0 0n n nn n nf s F s s f s f sf f− −− − ′= − − − − −  
 
Since we are going to be dealing with second order differential equations it will be convenient to 
have the Laplace transform of the first two derivatives. 

 
{ } ( ) ( )

{ } ( ) ( ) ( )2

0

0 0

y sY s y

y s Y s sy y

′ = −

′′ ′= − −




 

 
Notice that the two function evaluations that appear in these formulas, ( )0y  and ( )0y′ , are 
often what we’ve been using for initial condition in out IVP’s.  So, this means that if we are to 
use these formulas to solve an IVP we will need initial conditions at t = 0. 
 
While Laplace transforms are particularly useful for nonhomogeneous differential equations 
which have Heaviside functions in the forcing function we’ll start off with a couple of fairly 
simple problems to illustrate how the process works. 
 
Example 1  Solve the following IVP. 
 ( ) ( )10 9 5 , 0 1 0 2y y y t y y′′ ′ ′− + = = − =  
 
Solution 
The first step in using Laplace transforms to solve an IVP is to take the transform of every term in 
the differential equation. 
 { } { } { } { }10 9 5y y y t′′ ′− + =     
 
Using the appropriate formulas from our table of Laplace transforms gives us the following. 

( ) ( ) ( ) ( ) ( )( ) ( )2
2

50 0 10 0 9s Y s sy y sY s y Y s
s

′− − − − + =  

 
Plug in the initial conditions and collect all the terms that have a Y(s) in them. 

 ( ) ( )2
2

510 9 12s s Y s s
s

− + + − =  

Solve for Y(s). 

20



Differential Equations 

© 2007 Paul Dawkins 38 http://tutorial.math.lamar.edu/terms.aspx 
 

 ( ) ( )( ) ( )( )2

5 12
9 1 9 1

sY s
s s s s s

−
= +

− − − −
 

 
At this point it’s convenient to recall just what we’re trying to do.  We are trying to find the 
solution, y(t), to an IVP.  What we’ve managed to find at this point is not the solution, but its 
Laplace transform.  So, in order to find the solution all that we need to do is to take the inverse 
transform. 
 
Before doing that let’s notice that in its present form we will have to do partial fractions twice.  
However, if we combine the two terms up we will only be doing partial fractions once.  Not only 
that, but the denominator for the combined term will be identical to the denominator of the first 
term.  This means that we are going to partial fraction up a term with that denominator no matter 
what so we might as well make the numerator slightly messier and then just partial fraction once. 
 
This is one of those things where we are apparently making the problem messier, but in the 
process we are going to save ourselves a fair amount of work!  
 
Combining the two terms gives, 

 ( ) ( )( )
2 3

2

5 12
9 1
s sY s

s s s
+ −

=
− −

 

 
The partial fraction decomposition for this transform is, 

 ( ) 2 9 1
A B C DY s
s s s s

= + + +
− −

 

 
Setting numerators equal gives, 
 ( )( ) ( )( ) ( ) ( )2 3 2 25 12 9 1 9 1 1 9s s As s s B s s Cs s Ds s+ − = − − + − − + − + −  
 
Picking appropriate values of s and solving for the constants gives, 

 

50 5 9
9

1 16 8 2
319 248 648
81

4345 502 45 14
81 81

s B B

s D D

s C C

s A A

= = ⇒ =

= = − ⇒ = −

= = ⇒ =

= = − + ⇒ =

 

 
Plugging in the constants gives, 

 ( )
50 5 31
81 9 81

2

2
9 1

Y s
s s s s

= + + −
− −

 

 
Finally taking the inverse transform gives us the solution to the IVP. 

 ( ) 950 5 31 2
81 9 81

t ty t t= + + −e e  
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That was a fair amount of work for a problem that probably could have been solved much quicker 
using the techniques from the previous chapter.  The point of this problem however, was to show 
how we would use Laplace transforms to solve an IVP. 
 
There are a couple of things to note here about using Laplace transforms to solve an IVP.  First, 
using Laplace transforms reduces a differential equation down to an algebra problem.  In the case 
of the last example the algebra was probably more complicated than the straight forward 
approach from the last chapter.  However, in later problems this will be reversed.  The algebra, 
while still very messy, will often be easier than a straight forward approach. 
 
Second, unlike the approach in the last chapter, we did not need to first find a general solution, 
differentiate this, plug in the initial conditions and then solve for the constants to get the solution.  
With Laplace transforms, the initial conditions are applied during the first step and at the end we 
get the actual solution instead of a general solution. 
 
In many of the later problems Laplace transforms will make the problems significantly easier to 
work than if we had done the straight forward approach of the last chapter.  Also, as we will see, 
there are some differential equations that simply can’t be done using the techniques from the last 
chapter and so, in those cases, Laplace transforms will be our only solution. 
 
Let’s take a look at another fairly simple problem. 
 
Example 2  Solve the following IVP. 
 ( ) ( )22 3 2 , 0 0 0 2ty y y t y y−′′ ′ ′+ − = = = −e  
Solution 
As with the first example, let’s first take the Laplace transform of all the terms in the differential 
equation.  We’ll the plug in the initial conditions to get, 

 

( ) ( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )
( )

2
2

2
2

12 0 0 3 0 2
2

12 3 2 4
2

s Y s sy y sY s y Y s
s

s s Y s
s

′− − + − − =
+

+ − + =
+

 

 
Now solve for Y(s). 

 ( )
( )( ) ( )( )3

1 4
2 1 22 1 2

Y s
s ss s

= −
− +− +

 

 
Now, as we did in the last example we’ll go ahead and combine the two terms together as we will 
have to partial fraction up the first denominator anyway, so we may as well make the numerator a 
little more complex and just do a single partial fraction.  This will give, 

 
( ) ( )

( )( )

( )( )

2

3

2

3

1 4 2
2 1 2

4 16 15
2 1 2

s
Y s

s s

s s
s s

− +
=

− +

− − −
=

− +

 

 
The partial fraction decomposition is then, 
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 ( )
( ) ( )2 32 1 2 2 2

A B C DY s
s s s s

= + + +
− + + +

 

 
Setting numerator equal gives, 

 
( ) ( )( ) ( )( ) ( )

( ) ( ) ( )

3 22

3 2

4 16 15 2 2 1 2 2 1 2 2 1

2 6 7 2 12 4 3 2
8 4 2

s s A s B s s C s s D s

A B s A B C s A B C D s
A B C D

− − − = + + − + + − + + −

= + + + + + + + +

+ − − −

 

 
In this case it’s probably easier to just set coefficients equal and solve the resulting system of 
equation rather than pick values of s.  So, here is the system and its solution. 

 

3

2

1

0

: 2 0 192 96
: 6 7 2 4 125 125

2 1:12 4 3 2 16
25 5: 8 4 2 15

s A B
A Bs A B C

s A B C D C D
s A B C D

+ =
= − =+ + = −  ⇒

+ + + = −  = − = −
− − − = − 

 

 
We will get a common denominator of 125 on all these coefficients and factor that out when we 
go to plug them back into the transform.  Doing this gives, 

 ( ) ( ) ( ) ( )
2!
2!

2 31
2

251 192 96 10
125 2 2 2 2

Y s
s s s s

 −
= + − − 

 − + + + 
 

 
Notice that we also had to factor a 2 out of the denominator of the first term and fix up the 
numerator of the last term in order to get them to match up to the correct entries in our table of 
transforms.   
 
Taking the inverse transform then gives, 

 ( ) 2 2 2 2 21 2596 96 10
125 2

t t t ty t t t− − − = − + − − 
 

e e e e  

 
Example 3  Solve the following IVP. 
 ( ) ( ) ( )6 15 2sin 3 , 0 1 0 4y y y t y y′′ ′ ′− + = = − = −  
Solution 
Take the Laplace transform of everything and plug in the initial conditions. 

 
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )

2
2

2
2

30 0 6 0 15 2
9

66 15 2
9

s Y s sy y sY s y Y s
s

s s Y s s
s

′− − − − + =
+

− + + − =
+

 

 
Now solve for Y(s) and combine into a single term as we did in the previous two examples. 

 ( ) ( )( )
3 2

2 2

2 9 24
9 6 15

s s sY s
s s s
− + − +

=
+ − +
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Now, do the partial fractions on this.  First let’s get the partial fraction decomposition. 

 ( ) 2 29 6 15
As B Cs DY s
s s s
+ +

= +
+ − +

 

 
Now, setting numerators equal gives, 

 
( )( ) ( )( )
( ) ( ) ( )

3 2 2 2

3 2

2 9 24 6 15 9

6 15 6 9 15 9

s s s As B s s Cs D s

A C s A B D s A B C s B D

− + − + = + − + + + +

= + + − + + + − + + +
 

 
Setting coefficients equal and solving for the constants gives, 

 

3

2

1

0

: 1 1 1
: 6 2 10 10

11 5:15 6 9 9
10 2: 15 9 24

s A C
A Bs A B D

s A B C C D
s B D

+ = −
= =− + + =  ⇒

− + = −  = − =
+ = 

 

 
Now, plug these into the decomposition, complete the square on the denominator of the second 
term and then fix up the numerators for the inverse transform process. 

 

( )

( )
( )

( )
( ) ( )

2 2

22

63
63

2 22 2

1 1 11 25
10 9 6 15

11 3 3 251 1
10 9 3 6

811 311
10 9 9 3 6 3 6

s sY s
s s s

ss
s s

ss
s s s s

+ − + = + + − + 
 − − + ++

= + 
 + − + 
 −

=  + − − 
 + + − + − + 

 

 
Finally, take the inverse transform. 

 ( ) ( ) ( ) ( ) ( )3 31 1 8cos 3 sin 3 11 cos 6 sin 6
10 3 6

t ty t t t t t = + − − 
 

e e  

 
To this point we’ve only looked at IVP’s in which the initial values were at t = 0.  This is because 
we need the initial values to be at this point in order to take the Laplace transform of the 
derivatives.  The problem with all of this is that there are IVP’s out there in the world that have 
initial values at places other than t = 0.  Laplace transforms would not be as useful as it is if we 
couldn’t use it on these types of IVP’s.  So, we need to take a look at an example in which the 
initial conditions are not at t = 0 in order to see how to handle these kinds of problems. 
 
Example 4  Solve the following IVP. 
 ( ) ( ) ( )4 cos 3 4 , 3 0 3 7y y t t y y′′ ′ ′+ = − + = =  
Solution 
The first thing that we will need to do here is to take care of the fact that initial conditions are not 
at t = 0.  The only way that we can take the Laplace transform of the derivatives is to have the 
initial conditions at t = 0. 
 
This means that we will need to formulate the IVP in such a way that the initial conditions are at t 
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= 0.  This is actually fairly simple to do, however we will need to do a change of variable to make 
it work. We are going to define 
 3 3t tη η= − ⇒ = +  
 
Let’s start with the original differential equation. 
 ( ) ( ) ( )4 cos 3 4y t y t t t′′ ′+ = − +  
 
Notice that we put in the (t) part on the derivatives to make sure that we get things correct here.  
We will next substitute in for t. 
 ( ) ( ) ( ) ( )3 4 3 cos 4 3y yη η η η′′ ′+ + + = + +  
 
Now, to simplify life a little let’s define, 
 ( ) ( )3u yη η= +  
 
Then, by the chain rule, we get the following for the first derivative. 

 ( ) ( )3du dy dtu y
d dt d

η η
η η

′ ′= = = +  

 
By a similar argument we get the following for the second derivative. 

( ) ( )3u yη η′′ ′′= +  
The initial conditions for u(η) are, 

 
( ) ( ) ( )
( ) ( ) ( )

0 0 3 3 0

0 0 3 3 7

u y y

u y y

= + = =

′ ′ ′= + = =
 

The IVP under these new variables is then, 
 ( ) ( ) ( )4 cos 4 12, 0 0 0 7u u u uη η′′ ′ ′+ = + + = =  
 
This is an IVP that we can use Laplace transforms on provided we replace all the t’s in our table 
with η’s.  So, taking the Laplace transform of this new differential equation and plugging in the 
new initial conditions gives, 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( )

2
2 2

2
2 2

4 120 0 4 0
1

4 124 7
1

ss U s su u sU s u
s s s

s ss s U s
s s

′− − + − = + +
+

+
+ − = +

+

 

 
Solving for U(s) gives, 

 
( ) ( )

( )
( )( ) ( )

2
2

2 2

2

32

4 12 74
1

1 4 12 7
44 1

s s ss s U s
s s

s sU s
s ss s

+ +
+ = +

+
+ +

= +
++ +

 

 
Note that unlike the previous examples we did not completely combine all the terms this time.  In 
all the previous examples we did this because the denominator of one of the terms was the 
common denominator for all the terms.  Therefore, upon combining, all we did was make the 
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numerator a little messier, and reduced the number of partial fractions required down from two to 
one.  Note that all the terms in this transform that had only powers of s in the denominator were 
combined for exactly this reason. 
 
In this transform however, if we combined both of the remaining terms into a single term we 
would be left with a fairly involved partial fraction problem.  Therefore, in this case, it would 
probably be easier to just do partial fractions twice.  We’ve done several partial fractions 
problems in this section and many partial fraction problems in the previous couple of sections so 
we’re going to leave the details of the partial fractioning to you to check.  Partial fractioning each 
of the terms in our transform gives us the following. 

 
( )( )

( )

1
17

22

2 17 1711
16 164

3 3 2

1 1 4
4 17 14 1

4 12 7 1
4 4

s
s ss s

s s
s s s s s s

− + = +  + ++ +  

+ +
= + + −

+ +

 

 
Plugging these into our transform and combining like terms gives us 

 
( )

17 27311
16 2724

3 2 2

2! 17 27311
2! 16 2724
3 2 2 2

1 1 4
4 17 1

1 1 4
4 17 1 1

sU s
s s s s s

s
s s s s s s

− + = + + − +  + + 
− = + + − + + + + + 

 

 
Now, taking the inverse transform will give the solution to our new IVP.  Don’t forget to use η’s 
instead of t’s! 

 ( ) ( ) ( )( )2 41 11 17 273 1 4sin cos
2 4 16 272 17

u ηη η η η η−= + + − + −e  

 
This is not the solution that we are after of course.  We are after y(t).  However, we can get this 
by noticing that  
 ( ) ( ) ( ) ( )3 3y t y u u tη η= + = = −  
 
So the solution to the original IVP is, 

 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2 4 3

4 32

1 11 17 273 13 3 4sin 3 cos 3
2 4 16 272 17
1 1 43 273 1 4sin 3 cos 3
2 4 16 272 17

t

t

y t t t t t

y t t t t t

− −

− −

= − + − + − + − − −

= − − − + − − −

e

e
 

 
So, we can now do IVP’s that don’t have initial conditions that are at t = 0.  We also saw in the 
last example that it isn’t always the best to combine all the terms into a single partial fraction 
problem as we have been doing prior to this example. 
 
The examples worked in this section would have been just as easy, if not easier, if we had used 
techniques from the previous chapter.  They were worked here using Laplace transforms to 
illustrate the technique and method. 
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Table of Laplace Transforms 
 ( ) ( ){ }1f t F s−=   ( ) ( ){ }F s f t=    ( ) ( ){ }1f t F s−=   ( ) ( ){ }F s f t=   

1. 1 
1
s

 2. ate  
1

s a−
 

3. , 1, 2,3,nt n =   1

!
n

n
s +  4. pt , p > -1 

( )
1

1
p

p
s +

Γ +
 

5. t  3
22s
π

 6. 1
2 , 1, 2,3,nt n− =  

( )
1
2

1 3 5 2 1
2 nn

n
s

π
+

⋅ ⋅ −

 

7. ( )sin at  2 2

a
s a+

 8. ( )cos at  2 2

s
s a+

 

9. ( )sint at  ( )22 2

2as

s a+
 10. ( )cost at  ( )

2 2

22 2

s a

s a

−

+
 

11. ( ) ( )sin cosat at at−  ( )
3

22 2

2a

s a+
 12. ( ) ( )sin cosat at at+  ( )

2

22 2

2as

s a+
 

13. ( ) ( )cos sinat at at−  
( )
( )

2 2

22 2

s s a

s a

−

+
 14. ( ) ( )cos sinat at at+  

( )
( )

2 2

22 2

3s s a

s a

+

+
 

15. ( )sin at b+  ( ) ( )
2 2

sin coss b a b
s a
+
+

 16. ( )cos at b+  ( ) ( )
2 2

cos sins b a b
s a
−
+

 

17. ( )sinh at  2 2

a
s a−

 18. ( )cosh at  2 2

s
s a−

 

19. ( )sinat bte  ( )2 2

b
s a b− +

 20. ( )cosat bte  ( )2 2

s a
s a b

−

− +
 

21. ( )sinhat bte  ( )2 2

b
s a b− −

 22. ( )coshat bte  ( )2 2

s a
s a b

−

− −
 

23. , 1, 2,3,n att n =e   ( ) 1
!

n
n

s a +−
 24. ( )f ct  

1 sF
c c

 
 
 

 

25. ( ) ( )cu t u t c= −  
Heaviside Function 

cs

s

−e
 26. ( )t cδ −  

Dirac Delta Function 
cs−e  

27. ( ) ( )cu t f t c−  ( )cs F s−e  28. ( ) ( )cu t g t  ( ){ }cs g t c− +e L  

29. ( )ct f te  ( )F s c−  30. ( ) , 1, 2,3,nt f t n =   ( ) ( ) ( )1 n nF s−  

31. ( )1 f t
t

 ( )
s

F u du
∞

∫  32. ( )
0

t
f v dv∫  ( )F s

s
 

33. ( ) ( )
0

t
f t g dτ τ τ−∫  ( ) ( )F s G s  34. ( ) ( )f t T f t+ =  ( )

0

1

T st

sT

f t dt−

−−
∫ e

e
 

35. ( )f t′  ( ) ( )0sF s f−  36. ( )f t′′  ( ) ( ) ( )2 0 0s F s sf f ′− −  

37. ( ) ( )nf t  ( ) ( ) ( ) ( ) ( ) ( ) ( )2 11 20 0 0 0n nn n ns F s s f s f sf f− −− − ′− − − −  
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Table Notes 

1. This list is not a complete listing of Laplace transforms and only contains some of the 
more commonly used Laplace transforms and formulas. 
 

2. Recall the definition of hyperbolic functions. 

 ( ) ( )cosh sinh
2 2

t t t t

t t
− −+ −

= =
e e e e  

  
3. Be careful when using “normal” trig function vs. hyperbolic functions.  The only 

difference in the formulas is the “+ a2” for the “normal” trig functions becomes a “- a2” 
for the hyperbolic functions! 
 

4. Formula #4 uses the Gamma function which is defined as 

 ( ) 1

0

x tt x dx
∞ − −Γ = ∫ e  

 If n is a positive integer then, 
 ( )1 !n nΓ + =  

 
The Gamma function is an extension of the normal factorial function.  Here are a couple 
of quick facts for the Gamma function 
 

 

( ) ( )

( )( ) ( ) ( )
( )

1

1 2 1

1
2

p p p

p n
p p p p n

p

π

Γ + = Γ

Γ +
+ + + − =

Γ

 Γ = 
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