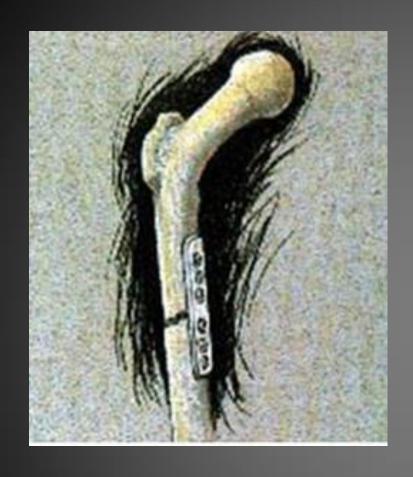
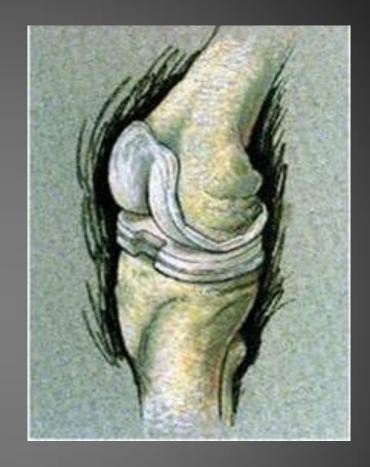
BIOMATERIALS IN ORTHOPAEDICS

Lecture 3


LEARNING OBJECTIVES


- Basic concepts and definitions
- Common orthopaedic biomaterials and clinical applications
- General tissue implant responses
- Complication associated with biomaterials
- Recent advances

INTRODUCTION

A biomaterial is

- substance / combination of substances (other than a drug)
- Origin: synthetic / natural
- life span : not specified
- Augments / replaces any tissue, organ or function of the body

Bone plate in 1900, earliest successful biomedical implants

Artificial knee joint to alleviate pain and restore functions

BIOMATERIALS CLASSIFICATION

- First generation
- Bioinert materials

- Second generation
- Bio active and biodegradable materials

- Third generation
- Materials designed to stimulate specific responses at molecular level

FIRST GENERATION

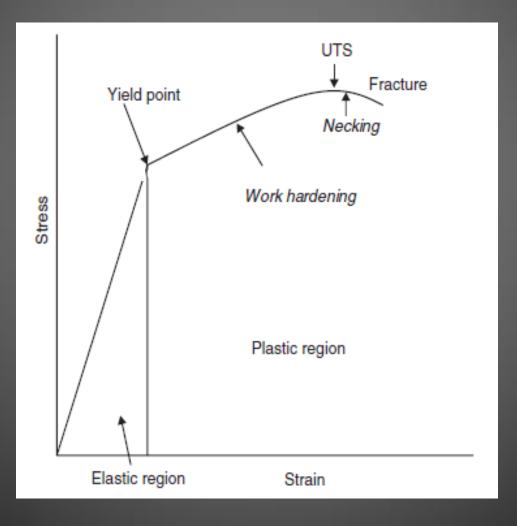
- Invented in 1980
- AIM :
 - Same physical properties to match replaced tissue
 - ➤ Minimal toxic response to host
 - ➤ Bio inert minimum immune response and foreign body reaction

SECOND GENERATION

- Invented between 1980 and 2000
- AIM
 - Interact with biological environment
 - Enhance biological response and tissue surface bonding (BIO ACTIVE)
 - ➤ Undergo progressive degradation with healing and regeneration of tissues (BIODEGRADABLE)

THIRD GENERATION

- Invented in 2002(Hench and polak)
- AIM
 - To stimulate specific cellular response at molecular level
 - Signal and stimulate specific cellular activity


BIOMATERIALS USED IN ORTHOPAEDICS

- Metal and metal alloys
- Ceramics and ceramometallic materials
- Tissue adhesives
- Bone replacement materials
- Carbon materials and composites, polymers

BASIC CONCEPTS & DEFINITIONS

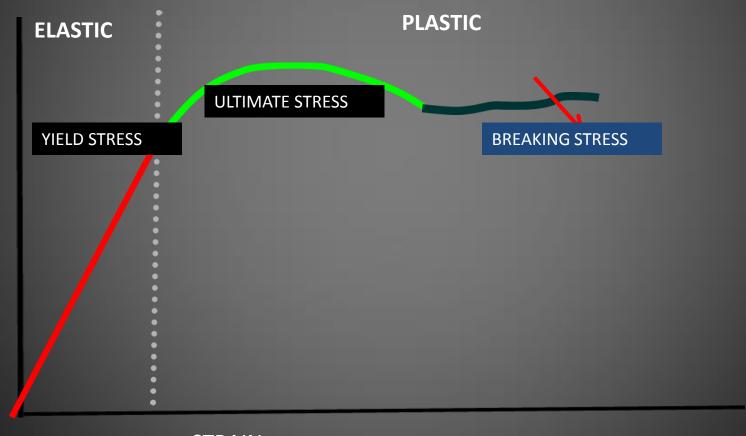
- Force applied will lead to deformation and if continued beyond a certain point will lead to ultimate failure
- The force per unit area----- STRESS and Deformation is known as STRAIN

STRESS-STRAIN CURVE Young's modulus of elasticity

DEFINITIONS

TENSILE STRENGTH/ ULTIMATE TENSILE STRENGTH –

The maximum stress on the curve before breakage


YIELD STRESS-

Point at which elastic behaviour changes to plastic Behaviour

BREAKING STRESS

Point at which the substance fails/brakes

 FATIGUE FAILURE: The failure of a material with repetitive loading at stress levels below the ultimate tensile strength

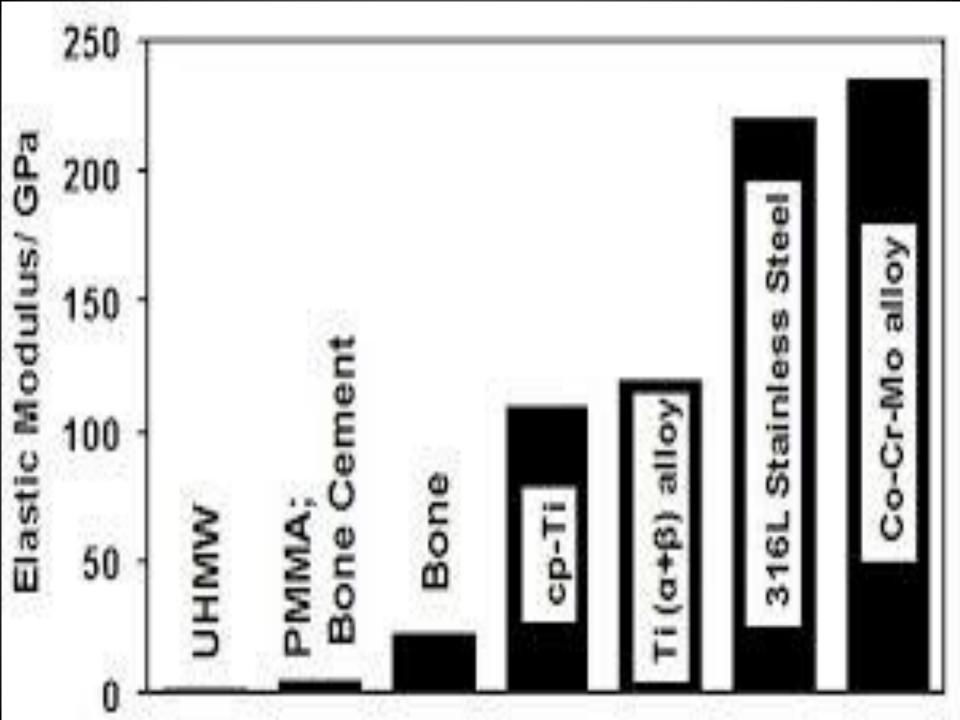
STRAIN

DEFINITIONS

- STRENGTH: The degree of resistance to deformation of a material
 - Strong if it has a high tensile strength
- TOUGHNESS: Amount of energy per unit volume that a material can absorb before failure
- DUCTILITY/ BRITTLENESS- The amount by which a *material* deforms (i.e. the strain that occurs) before it breaks.
- HOOKE'S LAW \rightarrow Stress α Strain produced
 - The material behaves like a spring

BONE BIOMECHANICS

□*Anisotropic:*


- >elastic modulus depends on direction of loading
- weakest in shear> tension> compression

□ viscoelastic:

stress-strain characteristics depend on the rate of loading

■ WOLF'S LAW:

- ➤ Bone remodelling occurs along the line of stress
- ☐ Bone density changes with age, disease, use and disuse

CLINICAL APPLICATIONS OF ORTHOPAEDIC IMPLANTS

Osteosynthesis

Joint replacements

Nonconventional modular tumor implants

Spine implants

IDEAL IMPLANT MATERIAL

- Chemically inert
- Non-toxic to the body
- Great strength
- High fatigue resistance
- Low Elastic Modulus
- Absolutely corrosion-proof
- Good wear resistance
- Inexpensive

COMMON IMPLANT MATERIALS IN ORTHOPAEDICS

Metal Alloys:

- > stainless steel
- > Titanium alloys
- Cobalt chrome alloys

Nonmetals:

- Ceramics & Bioactive glasses
- Polymers (Bone cement, polyethylene)

STAINLESS STEEL

COMPOSITION:

- > Iron (62.97%)
- > Chromium (18%)
- > Nickel (16%)
- ➤ Molybdenum (3%)
- > Carbon (0.03%)

The form used commonly is 316L (3% molybdenum, 16% nickel & L = Low carbon content)

STAINLESS STEEL

ADVANTAGES

- ✓ Relatively ductile
- ✓ Biocompatible
- ✓ Relatively cheap
- ✓ Reasonable corrosion resistance
- ✓ STRONG

Used in plates, screws, IM nails, external fixators

DISADVANTAGES:

- Poor wear resistance
- High Young's modulus 200 G Pascals (10× that of bone)
- stress shielding of surrounding bone and bone resorption

COBALT CHROME ALLOYS

- Contains primarily cobalt (30-60%)
- Chromium (20-30%) added to improve corrosion resistance
- Minor amounts of carbon, nickel and molybdenum added(ASTM F75 Vitallium)

COBALT CHROME ALLOYS

Advantages:

- Excellent resistance to corrosion
- Excellent long-term biocompatibility
- Strength (very strong)

Disadvantages:

- Very high Young's modulus
- Risk of stress shielding
- > Expensive

USES

- Usually for bearing surfaces
- THR
- Metal-on-metal devices.

THR IMPLANT BEARING SURFACES

Metal-on-polyethylene

Metal-on-metal

TITANIUM ALLOYS

- Contains:
 - Titanium (89%)
 - Aluminium (6%)
 - Vanadium (4%)
 - Others (1%)
- Most commonly orthopaedic titanium alloy is TITANIUM 64 (Ti-6Al-4v)

TITANIUM ALLOYS

- ADVANTAGES:
 - > Corrosion resistant
 - > Excellent biocompatibility
 - > Ductile
 - > Fatigue resistant
 - > Low Young's modulus
 - > MR scan compatibly
 - > osseointegration
- Useful in Int fixators, plates, vertebral spacers,IM nails etc.

- DISADANTAGES:
- poor wear characteristics
- Systemic toxicity vanadium
- Relatively expensive

YOUNG'S MODULUS AND DENSITY OF COMMON BIOMATERIALS

MATERIAL	YOUNG'S MODULUS (GPa)	DENSITY (g/cm³)
Cancellous bone	0.5-1.5	_
UHMWPE	1.2	-
PMMA bone cement	2.2	-
Cortical bone	7-30	2.0
Titanium alloy	110	4.4
Stainless steel	190	8.0
Cobalt chrome	210	8.5

COMPARISON OF METAL ALLOYS

ALLOY	Young's modulus (GPa)	Yield strength (MPa)	Ultimate tensile strength (MPa)
Stainless Steel 316L	190	500	750
Titanium 64	110	800	900
Cobalt chrome F562	230	1000	1200

BIOACTIVE IMPLANTS

- Coating of implant with a bioactive ceramic (HA and BGs).
 - ✓ electrophoretic deposition
 - ✓ plasma spraying,
 - √ radio frequency or ionic ray sputtering,
 - ✓ laser ablation or hot isostatic pressure
- > All are not cost effective

HA COATED IMPLANTS

CERAMICS

- Compounds of metallic elements e.g
 Aluminium bound ionically or covalently with nonmetallic elements
- Common ceramics include:
 - Alumina (aluminium oxide)
 - Silica (silicon oxide)
 - Zirconia (Zirconium oxide)
 - Hydroxyapatite (HA)

CERAMICS

Ceramics are refractory polycrystalline compounds

- Usually inorganic
- Highly inert
- Hard and brittle
- High compressive strength
- Generally good electric and thermal insulators
- Good aesthetic appearance

Types of bioceramics:

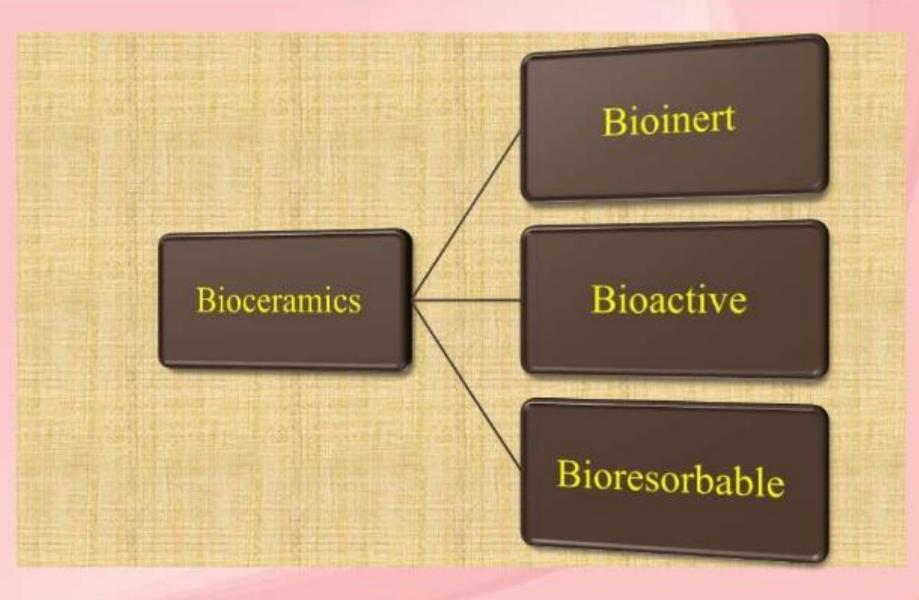


TABLE 1.3. Ceramics Used in Biomedical Applications

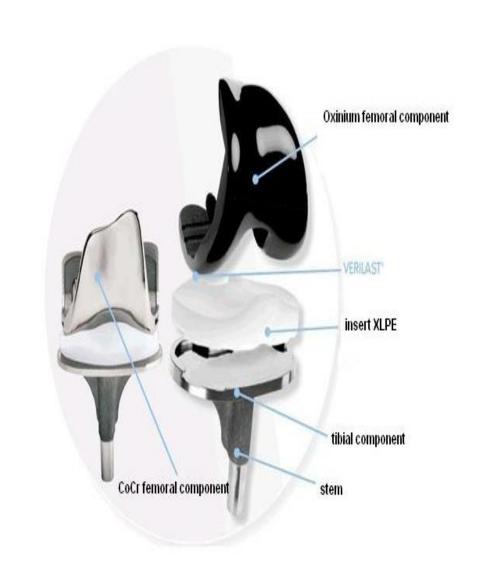
Chemical Formula

Ceramic	Chemical Formula	Comment
Alumina	Al_2O_3	Bioinert
Zirconia	ZrO_2	
Pyrolytic carbon		
Bioglass	Na ₂ OCaOP ₂ O ₃ -SiO	Bioactive
Hydroxyapatite (sintered at high temperature)	Ca ₁₀ (PO ₄) ₆ (OH) ₂	
Hydroxyapatite (sintered at low temperature)	Ca ₁₀ (PO ₄) ₆ (OH) ₂	Biodegradable
Tricalcium phosphate	$Ca_3(PO_4)_2$	·

ALUMINA(INERT CERAMICS)

APPLICATIONS:

- femoral head
- bone screws and plates
- porous coatings for femoral stems
- porous spacers (specifically in revision surgery)
- knee prosthesis



ZIRCONIA(ZrO₂)

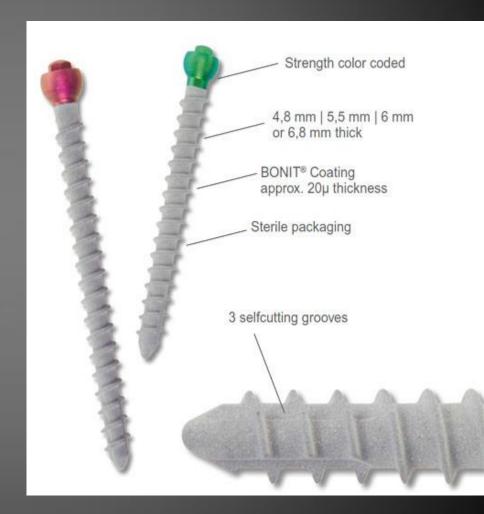
Obtained from the mineral zircon(Zr)

APPLICATION:

- femoral head
- artificial knee
- bone screws and plates
- favored over UHMWPE due to superior wear resistance

CERAMICS

ADVANTAGES


- ✓ Chemically inert & insoluble
- ✓ Best biocompatibility
- ✓ Very strong
- ✓ Osteoconductive
- ✓ Low wear resistance

DISADVANTAGES

- ✓ Brittleness
- ✓ Very difficult to process high melting point
- ✓ Very expensive
- ✓ High young's modulus
- ✓ Low tensile strength
- ✓ Poor crack resistance

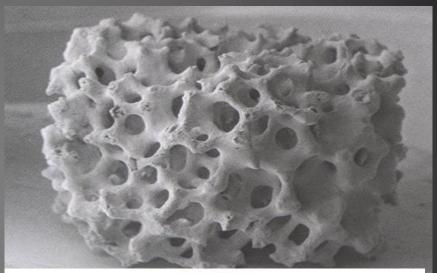
HA COATED SCREWS

BEARING SURFACES

Ceramic-on-polyethylene

Ceramic-on-ceramic

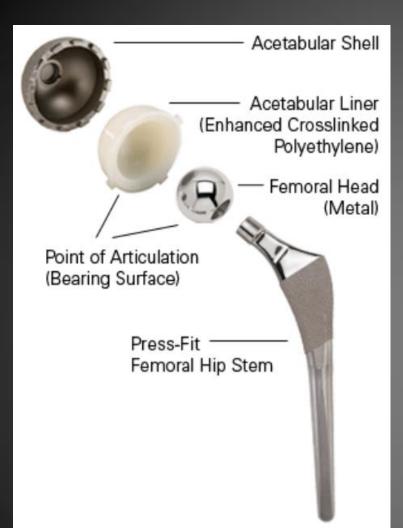
BIOACTIVE CERAMICS

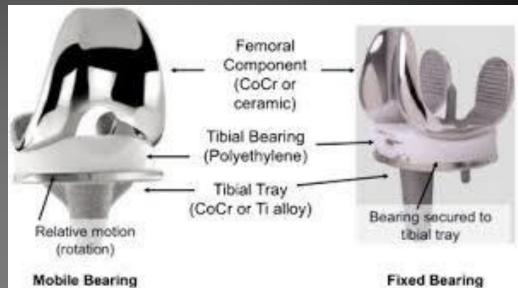

- ➤ Bio glass—ceramics
- calcium phosphates (CaPs)
- Silicon incorporated cements and ceramics
- Not used in high load bearing devices due to low tensile strength and toughness

BIODEGRADABLE CERAMICS(CALCIUM PHOSPHATE)

Uses

- repair material for bone damaged trauma or disease
- void filling after resection of bone tumours
- repair and fusion of vertebrae
- repair of herniated disks
- repair of maxillofacial and dental defects
- drug-delivery


CALCIUM PHOSPHATE



POLYMERS

- Consists of many repeating units of a basic sequence (monomer)
- Used extensively in orthopaedics
- Most commonly used are:
 - Polymethylmethacrylate (PMMA, Bone cement)
 - Ultrahigh Molecular Weight Polyethylene (UHMWPE)

PMMA

The powder contains:

- >PMMA copolymer
- > Barium or Zirconium oxide (radio-opacifier)
- Benzoyl peroxide (catalyst)

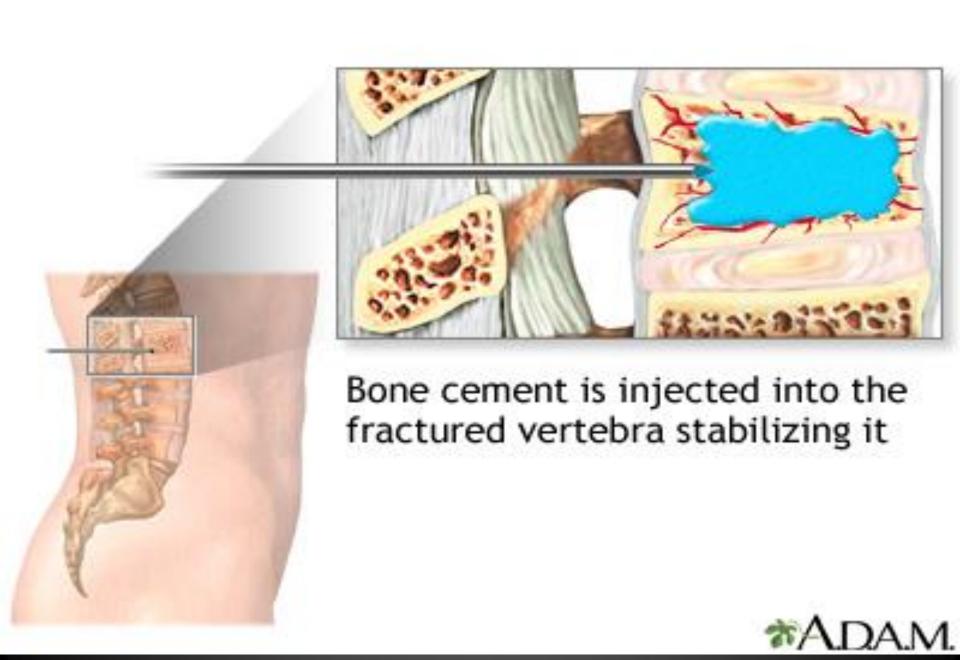
Clinically relevant stages of cement reaction:

- □ DOUGH TIME 2to 3 mins
- WORKING TIME 5 to 8 mins
- SETTING TIME 8 to 10 mins

PMMA (BONE CEMENT)

- Mainly used to fix prosthesis in place can also be used as void fillers
- Available as liquid and powder
- The liquid contains:
 - The monomer N,N-dimethyltoluidine (the accelerator)
 - > Hydroquinone (the inhibitor)

ADVANTAGES


- Tough
- Ductile
- Resilient
- Resistant to wear

USES:

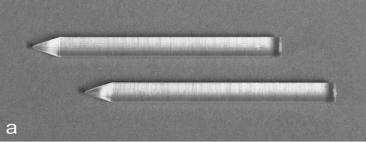
-It provides an excellent primary fixation of the prosthesis

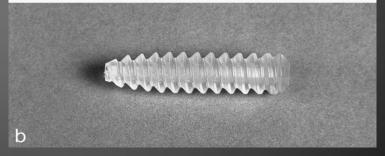
DISADVANTAGES

- Susceptible to abrasion
- Wear usually caused by third body inclusions
- Thermoplastic (may be altered by extreme temperatures)
- weaker than bone in tension

UHMWPE

- A polymer of ethylene with MW of 2-6million
- Used for acetabular cups in THR prostheses and tibial components in TKR
- Metal on polyethylene has high success rate in bearing surface in THR
- Osteolysis produced due to polyethylene wear debris causes aseptic loosening
- Increases polymer chain crosslinking which improves wear characteristics





BIODEGRADABLE POLYMERS

- Polyglycolic acid, Polylactic acid, copolymers
- As stiffness of polymer decreases, stiffness of callus increases
- Hardware removal not necessary (reduces morbidity and cost)

CARBON FIBRES

APPLICATIONS:

- >Total hip replacement
- Internal fixation for various fractures
- Spine surgeries

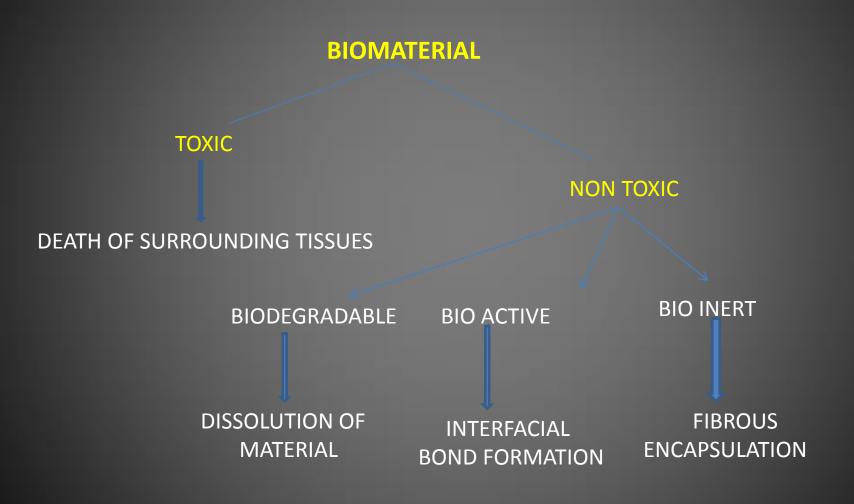
DISADVANTAGES:

➤ Release of carbon debris in to surrounding medium

TISSUE ADHESIVES

PROPERTIES OF TISSUE ADHESIVES:

- Moderately viscous (spread easily)
- Ability to degrade at a appropriate rate
- Biocompability


Commonly used tissue adhesives are

- fibrin gel, albumim, cyanoacrylates and mucopolysaccharides

GENERAL TISSUE-IMPLANT RESPONSES

- All implant materials elicit some response from the host
- The response occurs at tissue-implant interface
- Response depend on many factors;
 - Type of tissue/organ;
 - Mechanical load
 - Amount of motion
 - Composition of the implant
 - Age of patient

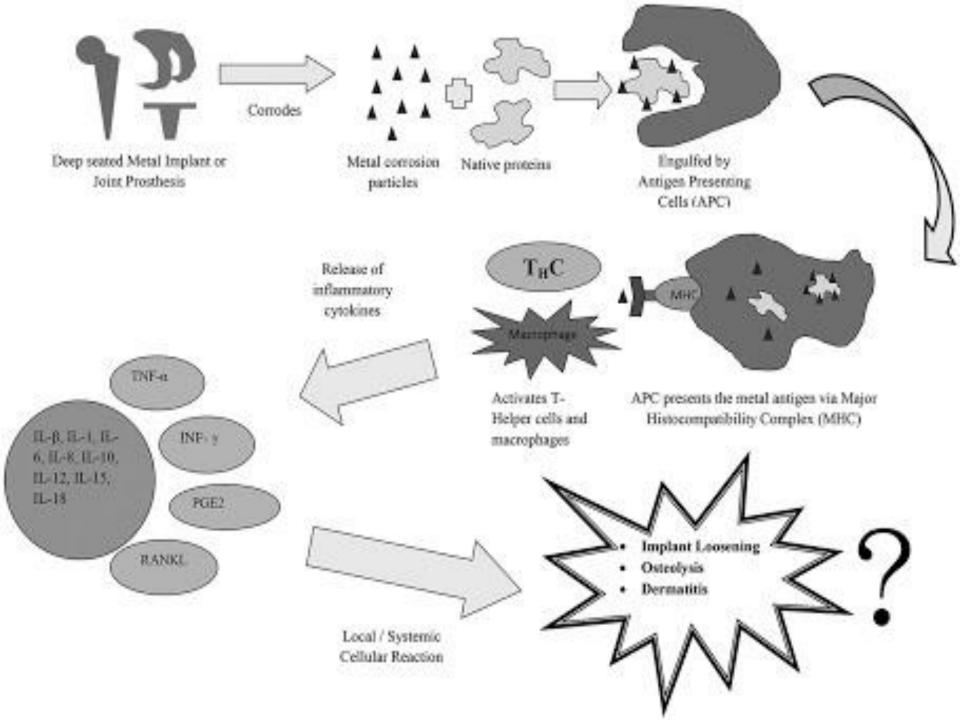
TISSUE-IMPLANT RESPONSES

COMPLICATIONS

Aseptic Loosening:

Caused by osteolysis from body's reaction to wear debris

Stress Shielding:


- Implant prevents bone from being properly loaded

Corrosion:

- Reaction of the implant with its environment resulting in its degradation to oxides/hydroxides

COMPLICATIONS

- Infection
- Metal hypersensitivity
- Manufacturing errors
- VARIOUS FACTORS CONTRIBUTE TO IMPLANT FAILURE

RECENT ADVANCES

- Aim is to use materials with mechanical properties that match those of the bone
- Modifications to existing materials to minimize harmful effects
 - Ex; nickel-free metal alloys
- Possibility of use of anti-cytokine in the prevention of osteolysis around implants
- Antibacterial implant

RECENT ADVANCES

- Porous tantalum is also being successfully used clinically in several orthopaedic applications.
 - high volumetric porosity,
 - low elastic modulus
 - good frictional characteristics
- Ideal candidate for weight-bearing applications such as total joint arthroplasty

CONCLUSION

- Adequate knowledge of implant materials is an essential platform to making best choices for the patient
- Promising and satisfying results from use of existing implant materials
- Advances in biomedical engineering will go a long way in helping the orthopedic surgeon
- The search is on...

BIBLIOGRAPHY

- CAMPBELLS OPERATIVE ORTHOPAEDICS 12th edition
- KULKARNI textbook of othopaedics and trauma 2nd edition
- http://www.ncbi.nlm.nih.gov/pmc/articles/P MC2706047/#bib197

THANKING YOU