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Lecture 3: Transient Response and Steady-State Response  

The time response of a control system consists of two parts:  

The transient response and the steady-state response.  

By transient response, we mean that which goes from the initial state to the final state.  

By steady-state response, we mean the manner in which the system output behaves as 𝑡 approaches 

infinity. Thus the system response 𝑐(𝑡) may be written as 

 

𝒄(𝒕) = 𝒄𝒕𝒓(𝒕) + 𝒄𝒔𝒔(𝒕) 

 

Where: 

𝒄𝒕𝒓(𝒕): is the transient response 

𝒄𝒔𝒔(𝒕): is the steady state response 

 

 

 

Standardized input functions: 

 
1. Step function  

(step position) (unit step function) 

 

      𝑟(𝑡) = 𝑎      𝑡 ≥ 0      

            𝑟(𝑡) = 0      𝑡 < 0 
 

      𝑟(𝑡) = −𝑎      𝑡 ≥ 0      

            𝑟(𝑡) =  0       𝑡 < 0 
 

 

   
       𝑟(𝑡) = 𝑎      𝑡 ≥ 𝑡0      

            𝑟(𝑡) = 0      𝑡 < 𝑡0                         
 

 

 

2. Ramp function  

(step velocity) 

 

     𝑟(𝑡) = 𝑡         𝑡 ≥ 0      

            𝑟(𝑡) =  0       𝑡 < 0 

 

t 

a 

𝑡0 
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3. Parabolic function (step acceleration) 

 

     𝑟(𝑡) =  𝑡2       𝑡 ≥ 0      

            𝑟(𝑡) =  0       𝑡 < 0 
 

 

 

 

 

 

 

 
 

Figure 15: waveforms for evaluating steady-state errors of position control systems 
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Transient response: 
First-Order Systems  

 
Consider the first-order system shown in Figure 16- (a). Physically, this system may represent an 

RC circuit, thermal system, or the like.  

A simplified block diagram is shown in Figure 16- (b). The input-output relationship is given by 

      

                                   
𝑪(𝒔)

𝑹(𝒔)
=

𝟏

𝑻𝒔+𝟏
                                                                 (4) 

 

In the following, we shall analyze the system responses to such inputs as the unit-step, unit-ramp, 

and unit-impulse functions. The initial conditions are assumed to be zero. 

Note that all systems having the same transfer function will exhibit the same output in response to 

the same input. For any given physical system, the mathematical response can be given a physical 

interpretation. 

 

 

Figure 16: (a) Block diagram of a first-order system; (b) simplified block diagram. 

 

 

Figure 17: transient and steady-state error 
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 Unit-Step Response of First-Order Systems 

Since the Laplace transform of the unit-step function is 1/𝑠, substituting 𝑅(𝑠) = 1/𝑠 into 

Equation (4), we obtain 

 

                                   𝒄(𝒔) =
𝟏

𝑻𝒔+𝟏

𝟏

𝒔
    

 
 

Expanding 𝐶(𝑠) into partial fractions gives 

 

𝐶(𝑠) =
𝑎1

𝑠
+

𝑎2

𝑇𝑠 + 1
 

𝑎1 = lim
𝑠→0

1

𝑇𝑠+1
= 1 ,  𝑎2 = lim

𝑠→−1 𝑇⁄

1

𝑠
=

1 

−1 𝑇⁄
=  −𝑇 

 

 

𝑪(𝒔) =
𝟏

𝒔
−

𝑻

𝑻𝒔+𝟏
=

𝟏

𝒔
−

𝟏

𝒔+𝟏 𝑻⁄
                                                                               (5) 

 
Taking the inverse Laplace transform of Equation (5), we obtain 

 

𝒄(𝒕) = 𝟏 − 𝒆−𝒕 𝑻⁄  ,      𝒇𝒐𝒓   𝒕 ≥ 𝟎                                                                       (6) 

 
Equation (6) states that initially the output 𝒄(𝒕) is zero and finally it becomes unity. 

One important characteristic of such an exponential response curve 𝒄(𝒕) is that at 𝑡 = 𝑇 , the value 

of 𝒄(𝒕) is 0.632, or the response 𝒄(𝒕) has reached 63.2% of its total change. This may be easily 

seen by substituting 𝑡 = 𝑇 in 𝑐(𝑡).That is, 

𝑐(𝑡) = 1 − 𝑒−1 = 0.632 

 

Note that the smaller the time constant 𝑇, the faster the system response. Another important 

characteristic of the exponential response curve is that the slope of the tangent line at 𝑡 = 0 is 1/𝑇, 

since 

                                                                                                        (7) 
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The output would reach the final value at 𝑡 = 𝑇 if it maintained its initial speed of response. 

From Equation (7) we see that the slope of the response curve 𝒄(𝒕) decreases monotonically 

from 1/T at 𝑡 = 0 to zero at 𝑡 = 𝑞. 

The exponential response curve 𝒄(𝒕) given by Eq. (6) is shown in Figure 15. 

In one time constant, the exponential response curve has gone from 0 to 63.2% of the final value. 

In two time constants, the response reaches 86.5% of the final value. At 𝑡 = 3𝑇, 4𝑇, and 5𝑇, the 

response reaches 95%, 98.2%, and 99.3%, respectively, of the final value. Thus, for 𝑡 ≥  4𝑇, the 

response remains within 2% of the final value. As seen from Eq. (6), the steady state is reached 

mathematically only after an infinite time. In practice, however, a reasonable estimate of the 

response time is the length of time the response curve needs to reach and stay within the 2% line 

of the final value, or four time constants. 

 

Figure 18: Exponential response curve. 

 

 Unit-Ramp Response of First-Order Systems 

Since the Laplace transform of the unit-ramp function is 1 𝑠2⁄ , we obtain the output of the system 

of Fig. 16 - (a) as 

                                   𝒄(𝒔) =
𝟏

𝑻𝒔+𝟏

𝟏

𝒔𝟐    

 
Expanding 𝐶(𝑠) into partial fractions gives 
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𝑐(𝑠) =
𝑎1

𝑠2
+

𝑎2

𝑠
+

𝑎3

𝑇𝑠 + 1
 

 

𝑎1 = lim
𝑠→0

1

𝑇𝑠+1
= 1 , 𝑎2 = lim

𝑠→0
(

𝑑

𝑑𝑠
(

1

𝑇𝑠+1
)) = lim

𝑠→0

𝑇

𝑇𝑠+1
= 𝑇,  𝑎3 = lim

𝑠→−1 𝑇⁄

1

𝑠2
=

1 

(−1 𝑇⁄ )2
=  𝑇2 

 

              𝒄(𝒔) =
𝟏

𝒔𝟐
−

𝑻

𝒔
+

𝑻𝟐

𝑻𝒔+𝟏
                                                                                (8) 

 
Taking the inverse Laplace transform of Eq. (8), we obtain 

 

     𝒄(𝒕) = 𝒕 − 𝑻 + 𝑻𝒆−𝒕 𝑻⁄  ,       𝑓𝑜𝑟   𝑡 ≥ 0                                                          (9) 

 
 

The error signal 𝑒(𝑡) is then 

𝒆(𝒕) = 𝒓(𝒕) − 𝒄(𝒕) 

 

∵ 𝒓(𝒕) = 𝒕,   𝒄(𝒕) = 𝒕 − 𝑻 + 𝑻𝒆−𝒕 𝑻⁄    

∴ 𝒆(𝒕) = 𝒕 − (𝒕 − 𝑻 + 𝑻𝒆−𝒕 𝑻⁄ ) 

𝑒(𝑡) = 𝑡 − 𝑡 + 𝑇 − 𝑇𝑒−𝑡 𝑇⁄  

𝑒(𝑡) = 𝑇 − 𝑇𝑒−𝑡 𝑇⁄  

∴ 𝒆(𝒕) = 𝑻(𝟏 − 𝒆−𝒕 𝑻⁄ ) 

 

As 𝑡 approaches infinity, 𝑒−𝑡 𝑇⁄  approaches zero, and thus the error signal 𝑒(𝑡) approaches 𝑇 or 

𝒆(∞) = 𝑻 

The unit-ramp input and the system output are shown in Fig. (16). The error in following the unit-

ramp input is equal to 𝑇 for sufficiently large t. The smaller the time constant 𝑇, the smaller the 

steady-state error in following the ramp input.  

 



TRANSIENT RESPONSE AND STEADY-

STATE RESPONSE 
LECTURE 3 

  
 

  

CONTROL ENG.- 4TH STAGE / DR.ALAA M.A. 36 

 

 

Figure 19: Unit-ramp response of the system shown in Fig. 16(a). 

 

 

 

 Unit-Impulse Response of First-Order Systems 
 
For the unit-impulse input, 𝑅(𝑠) = 1 and the output of the system of Fig. 16 - (a) can be obtained 

as 

                                             𝑐(𝑠) =
1

𝑇𝑠+1
                                                                                (10) 

 

The inverse Laplace transform of Eq. 10,  gives 

 

                                     𝑐(𝑡) =
1

𝑇
𝑒−𝑡 𝑇⁄ ,   𝑓𝑜𝑟 𝑡 ≥ 0                                            (11) 

 
The response curve given by Eq. (11) is shown in Fig. 20 
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Figure 20: Unit-impulse response of the system shown in Fig. 16 - (a). 

 

 

 

 

An Important Property of Linear Time-Invariant Systems 
 
In the analysis above, it has been shown that for the unit-ramp input the output 𝑐(𝑡) is  

 

           𝒄(𝒕) = 𝒕 − 𝑻 + 𝑻𝒆−𝒕 𝑻⁄  ,   𝑓𝑜𝑟 𝑡 ≥ 0  

 

For the unit-step input, which is the derivative of unit-ramp input, the output 𝑐(𝑡) is 

 

         𝒄(𝒕) = 𝟏 − 𝒆−𝒕 𝑻⁄  ,   𝒇𝒐𝒓 𝒕 ≥ 𝟎   
 
Finally, for the unit-impulse input, which is the derivative of unit-step input, the output 

 

         𝒄(𝒕) =
𝟏

𝑻
𝒆−𝒕 𝑻⁄ ,   𝒇𝒐𝒓 𝒕 ≥ 𝟎 

 

 
Comparing the system responses to these three inputs clearly indicates that the response to the 

derivative of an input signal can be obtained by differentiating the response of the system to the 

original signal. It can also be seen that the response to the integral of the original signal can be 

obtained by integrating the response of the system to the original signal and by determining the 

integration constant from the zero-output initial condition. This is a property of linear time-

invariant systems. 


