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Transient response: 
Second- Order Systems  
 

We consider a servo system as an example of a second-order system.  

Servo System: 

The servo system shown in Fig.21- (a) consists of a proportional controller and load elements 

(inertia and viscous-friction elements). Suppose that we wish to control the output position c in 

accordance with the input position r.  

 

Figure (21): (a) Servo system; (b) block diagram; (c) simplified block diagram. 

The equation for the load elements is  

𝐽�̈� + 𝐵�̇� = 𝑇 

where 𝑇 is the torque produced by the proportional controller whose gain is 𝐾. By taking Laplace 

transforms of both sides of this last equation, assuming the zero initial conditions, we obtain 

𝐽𝑠2𝐶(𝑠) + 𝐵𝑠𝐶(𝑠) = 𝑇(𝑠) 
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So the transfer function between 𝐶(𝑠) and 𝑇(𝑠) is 

𝐶(𝑠)

𝑇(𝑠)
=

1

𝑠(𝐽𝑠 + 𝐵)
 

By using this transfer function, Fig.21- (a) can be redrawn as in Fig.21 - (b), which can be modified 

to that shown in Fig.21 - (c). The closed-loop transfer function is then obtained as 

𝐶(𝑠)

𝑅(𝑠)
=

𝐾

𝐽𝑠2 + 𝐵𝑠 + 𝐾
=

𝐾/𝐽

𝑠2 + (𝐵 𝐽⁄ )𝑠 + (𝐾 𝐽⁄ )
 

Such a system where the closed-loop transfer function possesses two poles is called a second-order 

system. (Some second-order systems may involve one or two zeros). 

 

 Step Response of Second-Order System.  

The closed-loop transfer function of the system shown in Fig.18 - (c) is 

                   
𝐶(𝑠)

𝑅(𝑠)
=

𝐾

𝐽𝑠2+𝐵𝑠+𝐾
                                                                               (4-1) 

which can be rewritten as 

𝐶(𝑠)

𝑅(𝑠)
=

𝐾/𝐽

𝑠2 + (𝐵 𝐽⁄ )𝑠 + (𝐾 𝐽⁄ )
=

𝐾/𝐽

[𝑠 +
𝐵
2𝐽 + √(

𝐵
2𝐽)

2

−
𝐾
𝐽 ] [𝑠 +

𝐵
2𝐽 − √(

𝐵
2𝐽)

2

−
𝐾
𝐽 ]

 

The closed-loop poles are complex conjugates if 𝐵2 − 4𝐾𝐽 < 0 and they are real  

if 𝐵2 − 4𝐾𝐽 ≥ 0.  In the transient-response analysis, it is convenient to write 

𝑲

𝑱
= 𝝎𝒏

𝟐  ,
𝑩

𝑱
= 𝟐𝝃𝝎𝒏 = 𝟐𝝈 

where 𝝈 is called the attenuation; 𝝎𝒏, the undamped natural frequency; and ξ, the damping ratio 

of the system. The damping ratio ξ is the ratio of the actual damping 𝐵 to the critical damping 

𝐵𝑐 = 2√𝐽𝐾 or 
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𝜉 =
𝐵

𝐵𝑐
=

𝐵

2√𝐽𝐾
 

In terms of ξ and 𝝎𝒏, the system shown in Fig.18 - (c) can be modified to that shown in Fig.22, 

and the closed-loop transfer function 𝐶(𝑠)/𝑅(𝑠) given by Eq. (4-1) can be written 

                   
𝐶(𝑠)

𝑅(𝑠)
=  

𝜔𝑛
2

𝑠2+2𝜉𝜔𝑛𝑠+𝜔𝑛
2                                                            (4-2) 

This form is called the standard form of the second-order system. 

 

Figure 22: Second-order system 

 

The dynamic behavior of the second-order system can then be described in terms of two parameters 

ξ and 𝜔𝑛. 

 If 𝟎 < 𝝃 < 𝟏, the closed-loop poles are complex conjugates and lie in the left-half s-plane. 

The system is then called underdamped, and the transient response is oscillatory.  

 If 𝝃 = 𝟎, the transient response does not die out.  

 If 𝝃 = 𝟏, the system is called critically damped.  

 Overdamped systems correspond to 𝝃 > 𝟏. 
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For Unit step input, we consider three different cases:  

The underdamped (𝟎 < 𝝃 < 𝟏), critically damped (𝝃 = 𝟏), and overdamped (𝝃 > 𝟏) cases 

1) Underdamped case (0<ξ<1):  

In this case, 𝐶(𝑠)/𝑅(𝑠) can be written 

𝑪(𝒔)

𝑹(𝒔)
=  

𝝎𝒏
𝟐

(𝒔 + 𝝃𝝎𝒏 + 𝒋𝝎𝒅)(𝒔 + 𝝃𝝎𝒏 − 𝒋𝝎𝒅)
 

Where 𝜔𝑑 = 𝜔𝑛√1 − 𝜉2 . The frequency 𝜔𝑑 is called the damped natural frequency. For 

a unit-step input, 𝐶(𝑠) can be written 

                           𝐶(𝑠) =  
𝝎𝒏

𝟐

(𝒔𝟐+𝟐𝝃𝝎𝒏𝒔+𝝎𝒏
𝟐)𝒔

                                                             (4-3) 

The inverse Laplace transform of Eq. (4-3)  can be obtained easily if 𝐶(𝑠) is written in the 

following form: 

        

Referring to the Laplace transform table (4 -1), it can be shown that 

      

Hence the inverse Laplace transform of Eq.(4 -3) is obtained as 
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                      = 1 − 𝑒−𝜉𝜔𝑛𝑡 (𝑐𝑜𝑠𝜔𝑑𝑡 +
𝜉

√1−𝜉2
𝑠𝑖𝑛𝜔𝑑𝑡) 

                      = 1 −
𝑒−𝜉𝜔𝑛𝑡

√1−𝜉2
sin (𝜔𝑑𝑡 + 𝑡𝑎𝑛−1 √1−𝜉2

𝜉
      , 𝑓𝑜𝑟 𝑡 ≥ 0                   (4 – 4) 

From Eq. (4 - 4), it can be seen that the frequency of transient oscillation is the damped natural 

frequency 𝜔𝑑  and thus varies with the damping ratio ξ. The error signal for this system is the 

difference between the input and output and is 

                

This error signal exhibits a damped sinusoidal oscillation. At steady state, or at 𝑡 = ∞, no error 

exists between the input and output. 

 

2) Critically damped case (𝜉 = 1):  

If the two poles of 𝐶(𝑠)/𝑅(𝑠) are equal, the system is said to be a critically damped one. 

For a unit-step input, R(s)=1/s and C(s) can be written 

                                         𝐶(𝑠) =
𝜔𝑛

2

(𝑠+𝜔𝑛)2𝑠
                                                     (4 – 5) 

The inverse Laplace transform of Eq.(4 – 5) may be found as 

                      𝑐(𝑡) = 1 − 𝑒−𝜔𝑛𝑡(1 + 𝜔𝑛𝑡)  , 𝑓𝑜𝑟 𝑡 ≥ 0                                                       (4 – 6) 

This result can also be obtained by letting z approach unity in Eq.(4 – 4) and by using the following 

limit: 
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3) Overdamped case (𝜉 > 1):  

In this case, the two poles of C(s)/R(s) are negative real and unequal.  

For a unit-step input, R(s)=1/s and C(s) can be written 

                𝐶(𝑠) =
𝜔𝑛

2

(𝑠+𝜉𝜔𝑛+𝜔𝑛√𝜉2−1)(𝑠+𝜉𝜔𝑛−𝜔𝑛√𝜉2−1)𝑠
                                                (4 – 7) 

The inverse Laplace transform of Eq.(4 – 6) is 

                                      (4 – 8) 

Where 𝑠1 = (𝜉 + √𝜉2 − 1)𝜔𝑛  𝑎𝑛𝑑  𝑠2 = (𝜉 − √𝜉2 − 1)𝜔𝑛     

 

Thus, the response 𝑐(𝑡) includes two decaying exponential terms. 

When ξ is appreciably greater than unity, one of the two decaying exponentials decreases much 

faster than the other, so the faster-decaying exponential term (which corresponds to a smaller time 

constant) may be neglected. 
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A family of unit-step response curves 𝑐(𝑡) with various values of ξ is shown in Fig.(23), where 

the abscissa is the dimensionless variable 𝑤𝑛𝑡. The curves are functions only of ξ. These curves 

are obtained from Eq. (4 – 4), (4 – 6), and (4 – 8). The system described by these equations was 

initially at rest. 

Note that two second-order systems having the same ξ but different 𝝎𝒏 will exhibit the same 

overshoot and the same oscillatory pattern. Such systems are said to have the same relative 

stability. 

 

 

Figure (23): Unit-step response curves of the system shown in Fig. (19) 
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Table (4 – 1): Laplace Transform Pairs 
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Table (4 – 1): Laplace Transform Pairs (continued) 
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Table (4 – 2): Properties of Laplace Transforms 

 


