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SECOND- ORDER SYSTEMS

Transient response:
Second- Order Systems

We consider a servo system as an example of a second-order system.

Servo System:

The servo system shown in Fig.21- (a) consists of a proportional controller and load elements
(inertia and viscous-friction elements). Suppose that we wish to control the output position ¢ in
accordance with the input position r.

R(s) X 1) ] CGs)
- @ K sUs + B) »

(b)

R(s) K C(s)
s(Js+ B) -

(c)
Figure (21): (a) Servo system; (b) block diagram; (c) simplified block diagram.
The equation for the load elements is
Jé+Bé=T
where T is the torque produced by the proportional controller whose gain is K. By taking Laplace

transforms of both sides of this last equation, assuming the zero initial conditions, we obtain

Js2C(s) + BsC(s) = T(s)
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So the transfer function between C(s) and T(s) is

C(s) 1
T(s) s(Js+B)

By using this transfer function, Fig.21- (a) can be redrawn as in Fig.21 - (b), which can be modified

to that shown in Fig.21 - (c). The closed-loop transfer function is then obtained as

C(s) _ K 3 K/]
R(s) Js2+Bs+K s2+(B/s+ (K/)

Such a system where the closed-loop transfer function possesses two poles is called a second-order

system. (Some second-order systems may involve one or two zeros).

s Step Response of Second-Order System.
The closed-loop transfer function of the system shown in Fig.18 - (c) is

C(s) _ K
R(s)  Js2+Bs+K

(4-1)

which can be rewritten as

c(s) _ K/J _ K/J
R(s) s>+ (B/Ds+ K/]) 5
B B K B
s+7+ (@) ~7|s+ -

The closed-loop poles are complex conjugates if B2 — 4K] < 0 and they are real

if B2 — 4K] > 0. In the transient-response analysis, it is convenient to write

K , B
—=w,,—=28w, =20

J J

where a is called the attenuation; w,,, the undamped natural frequency; and &, the damping ratio

of the system. The damping ratio & is the ratio of the actual damping B to the critical damping

B. =2,\/JK or
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In terms of § and w,,, the system shown in Fig.18 - (c) can be modified to that shown in Fig.22,

and the closed-loop transfer function C(s)/R(s) given by Eq. (4-1) can be written

@) _ wi

R(s)  s2+28wps+w?

(4-2)

This form is called the standard form of the second-order system.

R(s) E(s) 2 C(s)
s(s + 2{w,) -

Figure 22: Second-order system

The dynamic behavior of the second-order system can then be described in terms of two parameters

& and w,,.

> If 0 < & < 1, the closed-loop poles are complex conjugates and lie in the left-half s-plane.
The system is then called underdamped, and the transient response is oscillatory.

» If & = 0, the transient response does not die out.

» If & = 1, the system is called critically damped.

» Overdamped systems correspond to § > 1.
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For Unit step input, we consider three different cases:

The underdamped (0 < § < 1), critically damped (§ = 1), and overdamped (§ > 1) cases
1) Underdamped case (0<&<1):
In this case, C(s)/R(s) can be written

C(s) _ W},
R(S) a (S + Ewn +jwd)(s + fwn _jwd)

Where w,; = w,+/1 — &2 . The frequency w, is called the damped natural frequency. For
a unit-step input, C(s) can be written

2
w3
2
(s2+28wps+twi)s

C(s) = (4-3)

The inverse Laplace transform of Eq. (4-3) can be obtained easily if C(s) is written in the

following form:

1 s + 2w,
C - - _
(s) S 82+ 2w,s + o
1 s +lw, {w,

S (s + o) + @} (s + lo,) + b

Referring to the Laplace transform table (4 -1), it can be shown that

= et cos wyt

33_{ 5+ {w, ]
(s + Lo, +

58‘{ wdz ] = et sin w,t
(s + {w,)” + &}

Hence the inverse Laplace transform of Eq.(4 -3) is obtained as

FC()] = ()
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=1—e$@nt (coswdt + Lsinwdt)

Jie
—&wnt =)
=1- er_l_fz sin(wgt + tan™? 1;( y fort =0 (4-4)

From Eq. (4 - 4), it can be seen that the frequency of transient oscillation is the damped natural
frequency w, and thus varies with the damping ratio &. The error signal for this system is the

difference between the input and output and is

r(t) — c(1)

e‘g“’"t( cosw,t +

e(t)

fort =0

%sinwdt),
=4

This error signal exhibits a damped sinusoidal oscillation. At steady state, or at t = oo, no error

exists between the input and output.

2) Critically damped case (¢ = 1):
If the two poles of C(s)/R(s) are equal, the system is said to be a critically damped one.

For a unit-step input, R(s)=1/s and C(s) can be written

C(s) = —2n__ 4-5
- (s+wy)?s (4-5)
The inverse Laplace transform of Eq.(4 — 5) may be found as

c®)=1—e (1 + wyt) , fort =0 (4-6)

This result can also be obtained by letting z approach unity in Eq.(4 — 4) and by using the following
limit:
sinwyt _ sinw, V1 — 1

lim —— = lim W,

{—1 \rgz {—1 m "
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3) Overdamped case (¢ > 1):
In this case, the two poles of C(s)/R(s) are negative real and unequal.

For a unit-step input, R(s)=1/s and C(s) can be written

wi
C(S) N (s+§wn+wm/52—1)(S+Ewn—wn,/€2—1)s “4=7
The inverse Laplace transform of Eq.(4 — 6) is
1 VAT
c(t)y =1+ e VDot
Ve -1+ VP -1)
— l e_(é.__\/g?—_l)%t
VP - 1(¢ - VE - 1)
| +——= (em eszt) fort = 0
= — , ort =
2VE -1\ % %2 (4-8)

Where s; = (€ + /&2 — 1w, and s, = (§ — /&2 — 1)w,

Thus, the response c(t) includes two decaying exponential terms.
When § is appreciably greater than unity, one of the two decaying exponentials decreases much
faster than the other, so the faster-decaying exponential term (which corresponds to a smaller time

constant) may be neglected.
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A family of unit-step response curves c(t) with various values of & is shown in Fig.(23), where
the abscissa is the dimensionless variable w,,t. The curves are functions only of & These curves
are obtained from Eq. (4 — 4), (4 — 6), and (4 — 8). The system described by these equations was

initially at rest.

Note that two second-order systems having the same & but different w,, will exhibit the same
overshoot and the same oscillatory pattern. Such systems are said to have the same relative
stability.
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Figure (23): Unit-step response curves of the system shown in Fig. (19)
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Table (4 — 1): Laplace Transform Pairs

f(1) F(s)
1 Linit impulse &) 1
. 1
2 Limit step 1(r) .
1
3 ! —
52
4 . =1,2,3 L
(n— 1) (r=1,2,3,...) 5
. n!
5 ! (m=1,2,3..) TS
1
6 e
F+0a
1
7 fe 5
(5 + a)
1 1
& g =1,2,3
m—1p ° (n=123..) (s + a)
- n!
9 e™  (mn=1,23..) )y
. L4%]
10 S0 gl -
5
11 wi
C0E 32 " ma
12 sinh et -
13 cosh el - j -
1 1
14 —(1 —e™) —_
a (5 + a)
1 1
15 e —_—
p_ale € (s + a)(s + b)
1 e - 5
16 —— (be™ — _—
b—al ae™™) (s + a)(s + b)
1 1 1
17 LN PO bea — get ]
ab a—b" a ") 55 + a)(s + b)

{confinues on next page)
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Table (4 — 1): Laplace Transform Pairs (continued)

1 1
18 —(1—&e™ — ate ™ e T—
azt ¢ e*) s(s + a)’
1 1
19 —(am —1+e™
azt ) 55 + a)
20 £ i e =
(s +a)f + o
il £ 08 ol - _zﬂ H
(5 +da)” + w
22 —r  etsinw VT - (D<= <1) _ % -
Vi- o F + Uw,s + ol
1
e sin(w, V1 — 1 — )
V1 - ?
- 5
= 6 —tant Y14 ¥+ Uws + o
0=<i=<1, 0<d¢<xf2)
1-— 1 etmrsin(w, V1= 2% + &)
V1 -t ; .
24 L V1I=-2 7 P
¢ = tan”! ——= (5% + Lens + i)
0=<i=<1, 0=<d¢<af2)
o
25 1 — cos el —_
55 + o)
26 ol — Sin i ;HJ 5
55 + o)
27 Sinesd — oof COS o 2o
R
1 5
28 — I Sin ol
Ziw (s* + 4:r.|2;'l1
2 _ 2
29 i Cos ol . =
R
30 1—[{:1::5:.:[: — cosant) (w] # w) il
o} — o (7 + af)(s” + wd)
31 L (sinas + oof o8 ) s
% 7+ 7
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Table (4 — 2): Properties of Laplace Transforms

1 S[Af(1)] = AF(5)

2 FA) =[] = Fis) £ Fs)
£ d — .
3 £, [Efm] = sF(s) — f(0)
d’ . :
4 E..ﬂ[ﬁfr_r]} = 5°F(5) — sf(0x) — F{0x)
. qn r'_.Ej: 1}
5 L[Ff{!)] = 5"F(s) — E F0x)
(-1} !

where_f[i'] = —1 Jir)

] Ur{rnm} Uﬁ”‘"]
i £E+[f---ff{!1(dfl“} ) F::) N ; j,n.lm [f...frn::}r.m:u*Lm
o gf[ffr_r]dr] ]

g _/D. f(tydt = lim F(s)  if ﬁ F(r)dt exists
10 Fle=f(1)] = F(s + a)

11 H[f(t — )t — )] =™ F(s) a=0
12 Hi()] = -

13 F[err(n] = ‘:,_ F(s)

14 F[efin] = [—Iy"f—‘; F(s) (rn=1,2,3..)
15 EE'[%_;I"(I}] = fmF{sjds lf!l_ﬂ%f(r} exists
16 o] 7(L)] = aras)

17 o [ - ﬂmw]dr] = F(s)Fy(s)

18 #1080 = 5 f F(p)G(s — p)dp
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