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Steady-State response in unity feedback control systems 

The steady state error is a measure of system accuracy. Errors in control system can be attributed 

to many factors such as the nature of the inputs, system type and from nonlinearities of system 

components. For example; Changes in the reference input will cause unavoidable errors during 

transient periods and may also cause steady-state errors. Imperfections in the system components, 

such as static friction, backlash, and amplifier drift, as well as aging or deterioration, will cause 

errors at steady state. We shall investigate a type of steady-state error that is caused by the 

incapability of a system to follow particular types of inputs. 

Any physical control system inherently suffers steady-state error in response to certain types of 

inputs. A system may have no steady-state error to a step input, but the same system may exhibit 

nonzero steady-state error to a ramp input. (The only way we may be able to eliminate this error 

is to modify the system structure.) Whether a given system will exhibit steady-state error for a 

given type of input depends on the type of open-loop transfer function of the system. 

 

Steady-State Errors 

 

Figure (7–7): Control system. 

 

Consider the system shown in Figure (7 – 7). The closed-loop transfer function is  

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)
⇒ 𝐶(𝑠) =

𝐺(𝑠)𝑅(𝑠)

1 + 𝐺(𝑠)
 

𝐶(𝑠) = 𝐸(𝑠)𝐺(𝑠) ⇒
𝐺(𝑠)𝑅(𝑠)

1+𝐺(𝑠)
= 𝐸(𝑠)𝐺(𝑠) ⇒ 𝐸(𝑠) =

𝑅(𝑠)

1+𝐺(𝑠)
 

where the error 𝑒(𝑡) is the difference between the input signal and the output signal. 

The final-value theorem provides a convenient way to find the steady-state performance of a 

stable system. Since E(s) is 
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𝐸(𝑠) =
1

1 + 𝐺(𝑠)
𝑅(𝑠) 

the steady-state error is 

 

The static error constants defined in the following are figures of merit of control systems. The 

higher the constants, the smaller the steady-state error. In a given system, the output may be the 

position, velocity, pressure, temperature, or the like. The physical form of the output, however, is 

immaterial to the present analysis. Therefore, in what follows, we shall call the output “position,” 

the rate of change of the output “velocity,” and so on. This means that in a temperature control 

system “position” represents the output temperature, “velocity” represents the rate of change of 

the output temperature, and so on. 

 

Steady state error of standard inputs 

 Static Position Error Constant 𝑲𝒑 

The steady-state error of the system for a unit-step input 𝑟(𝑡) = 1 ⇒ 𝑅(𝑠) = 1 𝑠⁄   is 

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺(𝑠)
= lim

𝑠→0

𝑠.
1
𝑠

1 + 𝐺(𝑠)
= lim

𝑠→0

1

1 + 𝐺(𝑠)
=

1

1 + lim
𝑠→0

𝐺(𝑠)
=

1

1 + 𝐺(0)
 

The static position error constant 𝐾𝑝  is defined by 

 

Thus, the steady-state error in terms of the static position error constant 𝐾𝑝 is given by 

∴ 𝒆𝒔𝒔 =
𝟏

𝟏 + 𝑲𝒑
 

For a type 0 system, 

 

 

For example; 𝐺(𝑠) =
1

𝑠+1
 , 𝐺(𝑠) =

1

𝑠2+𝑠+1
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For a 𝑡𝑦𝑝𝑒 1 or higher system, 

 

For example; ; 𝐺(𝑠) =
1

𝑠(𝑠+1)
⇒ 𝑒𝑠𝑠 =

1

1+∞
= 0 

Hence, for a 𝑡𝑦𝑝𝑒 0 system, the static position error constant 𝐾𝑝  is finite, while for a 𝑡𝑦𝑝𝑒 1 or 

higher system, 𝐾𝑝  is infinite. 

For a unit-step input, the steady-state error 𝑒𝑠𝑠 may be summarized as follows: 

            

 

From the foregoing analysis, it is seen that the response of a feedback control system to a step 

input involves a steady-state error if there is no integration in the feedforward path. (If small errors 

for step inputs can be tolerated, then a 𝑡𝑦𝑝𝑒 0 system may be permissible, provided that the gain 𝐾 

is sufficiently large. If the gain 𝐾 is too large, however, it is difficult to obtain reasonable relative 

stability.) If zero steady-state error for a step input is desired; the type of the system must be one 

or higher. 

 

 Static Velocity Error Constant 𝑲𝒗 

The steady-state error of the system with a unit-ramp input is given by 

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺(𝑠)
= lim

𝑠→0

𝑠.
1
𝑠2

1 + 𝐺(𝑠)
= lim

𝑠→0

1

𝑠(1 + 𝐺(𝑠))
=

1

lim
𝑠→0

𝑠𝐺(𝑠)
 

The static velocity error constant 𝐾𝑣  is defined by 

 

Thus, the steady-state error in terms of the static velocity error constant  𝐾𝑣  is given by 

∴ 𝒆𝒔𝒔 =
𝟏

𝑲𝒗
 

 



STEADY-STATE RESPONSE LECTURE 7 

  
 

  

CONTROL ENG.- 4TH STAGE / DR.ALAA M.A. 67 

 

The term velocity error is used here to express the steady-state error for a ramp input. The 

dimension of the velocity error is the same as the system error. That is, velocity error is not an 

error in velocity, but it is an error in position due to a ramp input. 

For a 𝑡𝑦𝑝𝑒 0 system, 

 

For a 𝑡𝑦𝑝𝑒 1 system, 

 

For a 𝑡𝑦𝑝𝑒 2 or higher system, 

 

 

 

The steady-state error 𝑒𝑠𝑠 for the unit-ramp input can be summarized as follows: 

 

 

 

The foregoing analysis indicates that a type 0 system is incapable of following a ramp input in the 

steady state. The type 1 system with unity feedback can follow the ramp input with a finite error. 

In steady-state operation, the output velocity is exactly the same as the input velocity, but there is 

a positional error. This error is proportional to the velocity of the input and is inversely proportional 

to the gain K. 
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Figure (7–8): Response of a type 1 unity-feedback system to a ramp input. 

 

Figure (7–8) shows an example of the response of a 𝑡𝑦𝑝𝑒 1 system with unity feedback to a ramp 

input. The 𝑡𝑦𝑝𝑒 2 or higher system can follow a ramp input with zero error at steady state. 

 

 Static Acceleration Error Constant 𝑲𝒂 

The steady-state error of the system with a unit-parabolic input (acceleration input), which is 

defined by 

                          

is given by 

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺(𝑠)
= lim

𝑠→0

𝑠.
1
𝑠3

1 + 𝐺(𝑠)
= lim

𝑠→0

1

𝑠2(1 + 𝐺(𝑠))
=

1

lim
𝑠→0

𝑠2𝐺(𝑠)
 

 

The static acceleration error constant 𝐾𝑎 is defined by the equation 

 

The steady-state error is then 

∴ 𝒆𝒔𝒔 =
𝟏

𝑲𝒂
 

Note that the acceleration error, the steady-state error due to a parabolic input, is an error in 

position. 
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The values of 𝑲𝒂 are obtained as follows: 

 

 

Thus, the steady-state error for the unit parabolic input is 

                

 

Note that both type 0 and type 1 systems are incapable of following a parabolic input in the steady 

state. The type 2 system with unity feedback can follow a parabolic input with a finite error signal. 

Figure (7–8) shows an example of the response of a type 2 system with unity feedback to a 

parabolic input. The type 3 or higher system with unity feedback follows a parabolic input with 

zero error at steady state. 

Table (7–1) summarizes the steady-state errors for type 0, type 1, and type 2 systems when they 

are subjected to various inputs. The finite values for steady-state errors appear on the diagonal line. 

Above the diagonal, the steady-state errors are infinity; below the diagonal, they are zero. 
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Figure (7–8): Response of a type 2 unity-feedback system to a parabolic input. 

 

Table (7 – 1): Steady-State Error in Terms of Gain 𝐾 

 

 

Remember that the terms position error, velocity error, and acceleration error mean steady-state 

deviations in the output position. A finite velocity error implies that after transients have died out, 

the input and output move at the same velocity but have a finite position difference. 

The error constants 𝑲𝒑, 𝑲𝒗, 𝒂𝒏𝒅 𝑲𝒂 describe the ability of a unity-feedback system to reduce or 

eliminate steady-state error. Therefore, they are indicative of the steady-state performance. It is 

generally desirable to increase the error constants, while maintaining the transient response within 

an acceptable range. It is noted that to improve the steady-state performance we can increase the 

type of the system by adding an integrator or integrators to the feedforward path. This, however, 

introduces an additional stability problem. The design of a satisfactory system with more than two 

integrators in series in the feedforward path is generally not easy. 
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Example: Find the steady-state errors for inputs of 5𝑢(𝑡), 5𝑡𝑢(𝑡), and 5𝑡2𝑢(𝑡) to the system 

shown below. The function 𝑢(𝑡) is the unit step.  

A.  

 

 

For step input 5𝑢(𝑡), we must calculate the position error coefficient (𝑲𝒑): 

 

𝐾𝑝 = lim
𝑠→0

𝐺(𝑠) =
120 × (0 + 2)

(0 + 3) × (0 + 4)
=

240

12
= 20 

𝒆𝒔𝒔 =
𝟓

𝟏 + 𝑲𝒑
=

𝟓

𝟏 + 𝟐𝟎
=

𝟓

𝟐𝟏
 

For ramp input 5𝑡𝑢(𝑡), we must calculate the velocity error coefficient (𝑲𝒗): 

 

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) =
(0) × 120 × (0 + 2)

(0 + 3) × (0 + 4)
=

0

12
= 0 

𝒆𝒔𝒔 =
𝟓

𝑲𝒗
=

𝟓

𝟎
= ∞ 

For parabolic input 5𝑡2𝑢(𝑡), we must calculate the acceleration error coefficient (𝑲𝒂): 

 

𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠) =
(0) × 120 × (2)

(3) × (4)
=

0

12
= 0 

𝒆𝒔𝒔 =
𝟓 × 𝟐

𝑲𝒂
=

𝟏𝟎

𝟎
= ∞ 
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B.  

 

 

For step input 5𝑢(𝑡), we must calculate the position error coefficient (𝑲𝒑): 

 

𝐾𝑝 = lim
𝑠→0

𝐺(𝑠) =
100 × (0 + 2) × (0 + 6)

0 × (0 + 3) × (0 + 4)
= ∞ 

𝒆𝒔𝒔 =
𝟓

𝟏 + 𝑲𝒑
=

𝟓

𝟏 + ∞
= 𝟎 

For ramp input 5𝑡𝑢(𝑡), we must calculate the velocity error coefficient (𝑲𝒗): 

 

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) =
100 × 2 × 6

(3) × (4)
=

1200

12
= 100 

𝒆𝒔𝒔 =
𝟓

𝑲𝒗
=

𝟓

 𝟏𝟎𝟎
= 𝟎. 𝟎𝟓 

For parabolic input 5𝑡2𝑢(𝑡), we must calculate the acceleration error coefficient (𝑲𝒂): 

 

𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠) =
(0) × 100 × 2 × 6

(3) × (4)
=

0

12
= 0 

𝒆𝒔𝒔 =
𝟓 × 𝟐

𝑲𝒂
=

𝟏𝟎

𝟎
= ∞ 
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Assignment 3: Find the steady-state errors for inputs of 2𝑢(𝑡), 2𝑡𝑢(𝑡), and 2𝑡2𝑢(𝑡) to the system 

shown below. The function 𝑢(𝑡) is the unit step.  

 

 

 

 

 

 

 

 


