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Impulse Response of Second-Order Systems 

For a unit-impulse input 𝑟(𝑡), the corresponding Laplace transform is unity, or 𝑅(𝑠) = 1.The 

unit-impulse response 𝐶(𝑠) of the second-order system is  

                              
𝑪(𝒔)

𝑹(𝒔)
=  

𝝎𝒏
𝟐

𝒔𝟐+𝟐𝝃𝝎𝒏𝒔+𝝎𝒏
𝟐                                                                      

The inverse Laplace transform of this equation yields the time solution for the response 𝑐(𝑡) as 

follows: 

For 0 < 𝜉 < 1, 

                   

For 𝜉 = 1, 

                

For 𝜉 > 1, 

             

Note that without taking the inverse Laplace transform of 𝐶(𝑠) we can also obtain the time 

response 𝑐(𝑡) by differentiating the corresponding unit-step response, since the unit-impulse 

function is the time derivative of the unit-step function. A family of unit-impulse response curves 

with various values of ξ is shown in Figure (7 – 2). The curves 𝑐(𝑡)/𝜔𝑛 are plotted against the 

dimensionless variable 𝑤𝑛𝑡, and thus they are functions only of ξ. For the critically damped and 

overdamped cases, the unit-impulse response is always positive or zero; that is, 𝑐(𝑡)  ≥  0. For the 

underdamped case, the unit-impulse response 𝑐(𝑡) oscillates about zero and takes both positive 

and negative values 
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Figure (7 – 2): Unit-impulse response curves of the system shown in Figure 5–6. 

 

From the foregoing analysis, we may conclude that if the impulse response 𝑐(𝑡) does not change 

sign, the system is either critically damped or overdamped, in which case the corresponding step 

response does not overshoot but increases or decreases monotonically and approaches a constant 

value. 

The maximum overshoot for the unit-impulse response of the underdamped system occurs at 

                     

 

 

Since the unit-impulse response function is the time derivative of the unit-step response function, 

the maximum overshoot 𝑀𝑝 for the unit-step response can be found from the corresponding unit-

impulse response. That is, the area under the unit-impulse response curve from 𝑡 = 0 to the time 
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of the first zero, as shown in Figure (7 – 3), is 1 + 𝑀𝑝, where 𝑀𝑝 is the maximum overshoot (for 

the unit-step response). The peak time 𝑡𝑝 (for the unit-step response) corresponds to the time that 

the unit-impulse response first crosses the time axis. 

 

 

 

Figure (7 – 3): Unit-impulse response curve of the system 
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EFFECTS OF INTEGRAL AND DERIVATIVE CONTROL 

ACTIONS ON SYSTEM PERFORMANCE 

we investigate the effects of integral and derivative control actions on the system performance. 

Integral Control Action. In the proportional control of a plant whose transfer function does not 

possess an integrator 1/𝑠, there is a steady-state error, or offset, in the response to a step input. 

Such an offset can be eliminated if the integral control action is included in the controller. 

In the integral control of a plant, the control signal—the output signal from the controller—at any 

instant is the area under the actuating-error-signal curve up to that instant. The control signal 𝑢(𝑡) 

can have a nonzero value when the actuating error signal 𝑒(𝑡) is zero, as shown in Figure (7  3) -

(a). This is impossible in the case of the proportional controller, since a nonzero control signal 

requires a nonzero actuating error signal. 

(A nonzero actuating error signal at steady state means that there is an offset.) Figure (7 – 3)-(b) 

shows the curve 𝑒(𝑡) versus 𝑡 and the corresponding curve 𝑢(𝑡) versus t when the controller is of 

the proportional type. 

Note that integral control action, while removing offset or steady-state error, may lead to 

oscillatory response of slowly decreasing amplitude or even increasing amplitude, both of which 

are usually undesirable. 

 

Figure (7 – 3): (a) Plots of 𝑒(𝑡) and 𝑢(𝑡) curves showing nonzero control signal when the 

actuating error signal is zero (integral control); (b) plots of 𝑒(𝑡) and 𝑢(𝑡) curves showing zero 

control signal when the actuating error signal is zero (proportional control). 
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Proportional Control of Systems 

Consider the system shown in Figure (7–4). Let us obtain the steady-state error in the unit-step 

response of the system. Define 

 

Figure (7–4): Plant Proportional control system. 

 

Such a system without an integrator in the feedforward path always has a steady-state error in the 

step response. Such a steady-state error is called an offset. Figure (7–5) shows the unit-step 

response and the offset. 

 

Figure (7–5): Unit-step response and offset. 
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Integral Control of Systems 

Consider the system shown in Figure (7 – 6). The controller is an integral controller. The closed-

loop transfer function of the system is  

 

Figure (7 – 6): Integral control system. 

 

 

 

Since the system is stable, the steady-state error for the unit-step response can be obtained by 

applying the final-value theorem, as follows: 

 

 

 

Integral control of the system thus eliminates the steady-state error in the response to the step input. 

This is an important improvement over the proportional control alone, which gives offset. 
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PID Controllers:  

PID controllers are found in a wide range of applications for industrial process control. 

Approximately 95% of the closed-loop operations of the industrial automation sector use PID 

controllers. PID stands for Proportional-Integral-Derivative. These three controllers are combined 

in such a way that it produces a control signal. As a feedback controller, it delivers the control 

output at desired levels. Before microprocessors were invented, PID control was implemented by 

the analog electronic components. But today all PID controllers are processed by the 

microprocessors. Programmable logic controllers also have the inbuilt PID controller instructions. 

Due to the flexibility and reliability of the PID controllers, these are traditionally used in process 

control applications. The term PID stands for proportional integral derivative and it is one kind of 

device used to control different process variables like pressure, flow, temperature, and speed in 

industrial applications. In this controller, a control loop feedback device is used to regulate all the 

process variables.  

A closed-loop system like a PID controller includes a feedback control system. This system 

evaluates the feedback variable using a fixed point to generate an error signal. Based on that, it 

alters the system output. This procedure will continue till the error reaches Zero otherwise the 

value of the feedback variable becomes equivalent to a fixed point. 

 

 

 

Figure (9 – 1): PID control system. 
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ZIEGLER–NICHOLS RULES FOR TUNING PID CONTROLLERS 

PID Control of Plants.  

Figure (9–2) shows a PID control of a plant. The process of selecting the controller parameters to 

meet given performance specifications is known as controller tuning. Ziegler and Nichols 

suggested rules for tuning PID controllers (meaning to set values 𝑲𝒑, 𝑻𝒊 𝑎𝑛𝑑 𝑻𝒅) based on 

experimental step responses or based on the value of 𝐾𝑝 that results in marginal stability when 

only proportional control action is used. 

 

 

 

Figure (9 – 2): PID control of a plant. 

 

Ziegler–Nichols rules, which are briefly presented in the following, are useful when mathematical 

models of plants are not known. (These rules can, of course, be applied to the design of systems 

with known mathematical models.) Such rules suggest a set of values of 𝐾𝑝, 𝑇𝑖 𝑎𝑛𝑑 𝑇𝑑 that will 

give a stable operation of the system. However, the resulting system may exhibit a large maximum 

overshoot in the step response, which is unacceptable. In such a case we need series of fine tunings 

until an acceptable result is obtained. In fact, the Ziegler–Nichols tuning rules give an educated 

guess for the parameter values and provide a starting point for fine tuning, rather than giving the 

final settings for 𝐾𝑝, 𝑇𝑖 𝑎𝑛𝑑 𝑇𝑑 in a single shot. 

Note: If a mathematical model of the plant can be derived, then it is possible to apply various 

design techniques for determining parameters of the controller that will meet the transient and 

steady-state specifications of the closed-loop system. However, if the plant is so complicated that 

its mathematical model cannot be easily obtained, then an analytical or computational approach to 

the design of a PID controller is not possible. Then we must resort to experimental approaches to 

the tuning of PID controllers. 

 

Controller 
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Ziegler–Nichols Rules for Tuning PID Controllers.  

Ziegler and Nichols proposed rules for determining values of the proportional gain 𝑲𝒑, integral 

time 𝑻𝒊  and derivative time  𝑻𝒅 based on the transient response characteristics of a given plant. 

Such determination of the parameters of PID controllers or tuning of PID controllers can be made 

by engineers on-site by experiments on the plant. (Numerous tuning rules for PID controllers have 

been proposed since the Ziegler–Nichols proposal. They are available in the literature and from 

the manufacturers of such controllers.) There are two methods called Ziegler–Nichols tuning rules: 

the first method and the second method. We shall give a brief presentation of these two methods. 

 

First Method: In the first method, we obtain experimentally the response of the plant to a unit-

step input, as shown in Figure (9–2). If the plant involves neither integrator (𝑆) nor dominant 

complex-conjugate poles, then such a unit-step response curve may look S-shaped, as shown in 

Figure (9–3). This method applies if the response to a step input exhibits an 𝑆 − 𝑠ℎ𝑎𝑝𝑒𝑑 𝑐𝑢𝑟𝑣𝑒. 

Such step-response curves may be generated experimentally or from a dynamic simulation of the 

plant. 

The 𝑆 − 𝑠ℎ𝑎𝑝𝑒𝑑 𝑐𝑢𝑟𝑣𝑒 may be characterized by two constants, delay time L and time constant 𝑇. 

The delay time and time constant are determined by drawing a tangent line at the inflection point 

of the 𝑆 − 𝑠ℎ𝑎𝑝𝑒𝑑 𝑐𝑢𝑟𝑣𝑒 and determining the intersections of the tangent line with the time axis 

and line 𝑐(𝑡) = 𝐾, as shown in Figure (9–3).  

 

 

Figure (9–2): Unit-step response of a plant. 
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Figure (9–3): S-shaped response curve. 

 

The transfer function 𝐶(𝑠)/𝑈(𝑠) may then be approximated by a first-order system with a  

transport lag as follows: 

 

Ziegler and Nichols suggested to set the values of and according to the formula shown in Table 

9–1. 

Table (9–1): Ziegler–Nichols Tuning Rule Based on Step Response of Plant (First Method) 

 

 

Notice that the PID controller tuned by the first method of Ziegler–Nichols rules gives 
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Thus, the PID controller has a pole at the origin and double zeros at 𝑠 =– 1/𝐿. 

 

Second Method: In the second method, we first set and Using the proportional control action only 

(see Figure 9–4), increase 𝑲𝒑 from 0 to a critical value 𝑲𝒄𝒓 at which the output first exhibits 

sustained oscillations. (If the output does not exhibit sustained oscillations for whatever value 

𝑲𝒑 may take, then this method does not apply.) Thus, the critical gain 𝑲𝒄𝒓   and the corresponding 

period 𝑷𝒄𝒓 are experimentally determined (see Figure 9–5). Ziegler and Nichols suggested that we 

set the values of the parameters 𝑲𝒑, 𝑻𝒊 𝑎𝑛𝑑 𝑻𝒅 according to the formula shown in Table 9–2. 

 

 

Figure (9–4): Closed-loop system with a proportional controller. 

 

 

Figure (9–5): Sustained oscillation with period 𝑃𝑐𝑟 (𝑃𝑐𝑟 is measured in sec.) 
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Table (9–2): Ziegler–Nichols Tuning Rule Based on Critical Gain 𝐾𝑐𝑟 and Critical Period 𝑃𝑐𝑟 

(Second Method) 

 

 

Notice that the PID controller tuned by the second method of Ziegler–Nichols rules gives 

 

Thus, the PID controller has a pole at the origin and double zeros at 𝑠 = − 4 𝑃𝑐𝑟⁄ . 

Note that if the system has a known mathematical model (such as the transfer function), then we 

can use the root-locus method to find the critical gain 𝑃𝑐𝑟 and the frequency of the sustained 

oscillations 𝜔𝑐𝑟, where 2𝜋 𝜔𝑐𝑟⁄ = 𝑃𝑐𝑟. These values can be found from the crossing points of the 

root-locus branches with the 𝑗𝜔 axis. (Obviously, if the root-locus branches do not cross the 𝑗𝜔 

axis, this method does not apply.) 
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Example 1: Consider the control system shown in Figure 9–6 in which a PID controller is used to 

control the system. The PID controller has the transfer function  

𝐺𝑐(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) 

Although many analytical methods are available for the design of a PID controller for the present 

system, let us apply a Ziegler–Nichols tuning rule for the determination of the values of parameters 

𝑲𝒑, 𝑻𝒊 𝑎𝑛𝑑 𝑻𝒅.  Then obtain a unit-step response curve and check to see if the designed system 

exhibits approximately 25% maximum overshoot. If the maximum overshoot is excessive (40% 

or more), make a fine tuning and reduce the amount of the maximum overshoot to 

approximately 25% or less. 

Since the plant has an integrator, we use the second method of Ziegler–Nichols tuning rules. 

By setting 𝑇𝑖 = ∞ 𝑎𝑛𝑑 𝑇𝑑 = 0, we obtain the closed-loop transfer function as follows: 

 

𝐶(𝑠)

𝑅(𝑠)
=

𝐾𝑝

𝑠(𝑠 + 1)(𝑠 + 5) + 𝐾𝑝
 

The value of 𝑲𝒑 that makes the system marginally stable so that sustained oscillation occurs can 

be obtained by use of Routh’s stability criterion. Since the characteristic equation for the closed-

loop system is 

               

the Routh array becomes as follows: 
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Figure (9–6): PID-controlled system. 

Examining the coefficients of the first column of the Routh table, we find that sustained oscillation 

will occur if 𝐾𝑝 = 30  Thus, the critical gain is 𝐾𝑐𝑟 

𝐾𝑐𝑟 = 30 

With gain 𝐾𝑝 set equal to 𝐾𝑐𝑟 = 30 the characteristic equation becomes 

 

To find the frequency of the sustained oscillation, we substitute 𝑠 = 𝑗𝜔 into this characteristic 

equation as follows: 

 
Or 

 
from which we find the frequency of the sustained oscillation to be 𝜔2 = 5 or 𝜔 = √5 .  

Hence, the period of sustained oscillation is 

 

Referring to Table 9–2, we determine 𝑲𝒑, 𝑻𝒊 𝑎𝑛𝑑 𝑻𝒅 as follows: 

 

The transfer function of the PID controller is thus 
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The PID controller has a pole at the origin and double zero at 𝑠 =– 1.4235. A block diagram of 

the control system with the designed PID controller is shown in Figure 9–7. 

 
Figure (9–7): Block diagram of the system with PID controller designed by use of the 

Ziegler–Nichols tuning rule (second method). 

 

Next, let us examine the unit-step response of the system. The closed-loop transfer function 

𝐶(𝑠)/𝑅(𝑠) is given by 

 

 


