Lectures (9-10):
ODEs Models for Biological Systems

9.1 System Biology

e Systems Biology = investigates function of genetic, molecular and cellular
processes in a systematic way: —making (biologically relevant) sense out of data
why “systems”?

o biological processes — mathematical models

o many processes simultaneously — systematic methods

Approach of today: detailed description of elementary dynamical moduli for
biological processes by means of ODEs (Ordinary Differential Equations)
Inspiration: reaction kinetics

basic building blocks in constructing networks of interactions for known

biochemical pathways
9.2 Biological moduli as ODEs

e whatisa ODE?
Consider x = concentration of a substrate X (e.g. mMRNA, protein, small molecule, metabolite,
any reagent)
e attime t + At, (At small) one can expand in Taylor series
x(t+ At) = x(t) + kx(t)At
r(t+At)—z(t) _ . dr

. o . lima¢—o0 At —- dt
in the limit for small times

dx

1st order, linear, autonomous ordinary differential equation
it involves two different quantities:
o X = state variable
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o k= parameter (does not describe an elementary component of the process)
e it describes a reaction rate, i.e., how the concentration of

X varies with time.

9.3 Maltus Law

¢ separate the variables “—; = kdt
¢ integrate both sides
d—l /kdt
T :
kt

1n Z)

z(0)
Inz(t) = Inz(0)+kt

where z(0) = z, = constant
+ Exponentiating

z(t) = e

The characteristic evolution of the Maltus law is exponential and depends on the sign of k

1. k > 0 exponential growth

2. k <0 exponential decay
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9.4 Solving ODEs: Matlab

Apart from simple cases (like Maltus law) there is little chance to find explicit solutions
of an ODE or of a system of ODEs. How to proceed then?
Use a simulator to numerically integrate the ODEs.
example: ANSYS CFD, Matlab (standard software in all engineering fields)
define a function for the ODE
function dzdt = Maltus(t,z,k);
dzdt=k*z;
e define parameter, initial condition, time interval
k =0.7; % growth constant
X0 =1; % initial condition
tspan = [0, 5]; % time interval
e integration routine
[t,x] = ode45(@Maltus,tspan,x0,[],K);

9.5 Qualitative behavior: steady state
e what is the long time behavior? x(o0) =777
e if oneis lucky it coincides with the steady state solution of the ODE: steady state(s) is

the value(s) xss of x for which

dr

7=

since dx=dt = 0, the rate does not change — ODE “stays

there” forever

. asteady state Xss is said stable wher

changing the initialconditions the

steady state remains the same

e when is a steady state stable?
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o for the Maltus law dx=dt = kx

d_.r =0 — z=0
dt

{;(0):;-::0 = <0
dzx

(0)=e>0 = 50

¢ — r., = 0is unstable
+ 7 grows and i}f grows = unbounded solution

z(0)=c<0 = 4259

2. k<0 : ar
= {.1'(())25} 0 = <0

¢ — 1., = 0is stable

the decay dx=dt = kx, k < 0 can be seen as a kinetic reaction (in which I am not interested
in the product of the degradation):

to analyze more complex reactions: law of mass action when 2 or more reactants
are involved in a reaction step, the reaction rates are proportional to the product of
their concentrations

justification: macroscopic version of collision theory

validity:

o constant temperature

o medium must be well-mixed

o # of molecules must be high

e bimolecular reaction

e dissociation

g B % ax
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e reversible dissociation

- = —kixy+k_z
: = = —kyxy+k_z
) = =kyry —k_z

X +Y

[

9.6 Elementary reaction kinetics

e conservation laws (e.g. mass conservation) can be used to reduce the number of equations
involved:

o example:

= —kyzy+ k_z T4z !
+TY d( ;L-lz() = z(t) +2(t) =To + 20 = ao

d(!:i::] =0 y(()+:(():yo+.:0:bo

=—kyzy+k_z =

S =kixy—k_z

hence the system of 3 ODEs reduces to the scalar ODE

dz
— =ky(ao —2)(bp—2) — k_2z
7 +(a ) )

once I solve this ODE (homework: write your Matlab routine) for z(t) | can recover

z(t) = a,—z2(t)
y(t) = bo—2(t)

9.7 Enzyme catalyzed reactions

e most reactions need to be catalyzed to take place at interesting rates
e enzymes = proteins that convert specific reactants (called substrates) into products while

remaining basically unchanged

enzyme
-‘ Y

substrate

product
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9.8 Enzyme catalyzed reactions

e rate of production depends nonlinearly on the concentration of the substrate

by

—

k_1

S+E

¢ S = substrate

¢ I = enzyme

¢ C = complex (* = [E'S]")
¢ P = product

® ODEs
- = —kise+k_;c
= = —k1se + (k_1 + k2)c
- = kyse — (k_1 + k2)c

= A‘A_)(,‘

9.9 Enzyme catalyzed reactions
e simplifications:
e last equation does not feedback =) I can ignore it and get p(t) by integration once | have

c(t)

 conservation of mass for the enzyme:

de dc

E+E=() = e(t)+c(t) = const=¢,

often at t = 0 one has ¢(0) = 0 and e(0) = eo

o — another equation can be eliminated

ds

dt
de

dt

—kis(e, — ¢) + k_1c

kis(eo — ¢) — (k_1 + ko2)c

« how do you solve these?
9.10 Michaelis Menten kinetics

e (uasi steady state approximation: after a transient period in which the enzyme “fills up”,

the amount of complex C stays (almost) the same:
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de -
dt

— system reduces to a scalar ODE

ds Vs i
E = —m where ‘m = I\-_)(O
® meaning of # and V,,,:
¢ V., = upper bound for £
¢ ) = value of s for which

d‘f_l r
=iV,

dat

« meaning of a Michaelis Menten reaction kinetics

dr V,zx

dt  O+x

e it introduces a saturating behavior in the dynamics

e often more realistic than Maltus law even when the substrate is abundant

Maltus law

9.11 “True” vs MM reaction

looking again at the ODE, there are 2 time scales

“slow time scale” in which ¢ can be thought of as constant — quasi steady state

approximation holds
“fast time scale” (in which the approximation does not hold)

in short: c(t) adjusts very fast to the steady state solution
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slow time scale:

e more rigorous analysis: singular perturbation theory
9.12 Matlab code used

e function for a system of ODEs: same as scalar ODEs
% function for enzyme reaction
% with Michaelis-Menten kinetics
% system of 2 ODEs
function dzdt = f enz mich mentl(t,z);
% pass the parameters to the function
global k1 kim k2 e0
% extract the states from the vector z
s=z(1);
c=z(2);
% ODEs
dsdt=kim*c-k1*s*(e0-c);
dcdt=k1*s*(e0-c)-(k1m+k2)*c;
% output vector
dzdt=[dsdt; dcdt];

e integration routine
[t,z] = ode45(@f enz mich mentl,tspan,z0,[]);
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