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Lectures (9-10): 

ODEs Models for Biological Systems 

9.1 System Biology 

• Systems Biology = investigates function of genetic, molecular and cellular 

processes in a systematic way: →making (biologically relevant) sense out of data 

• why “systems”? 

o biological processes → mathematical models 

o many processes simultaneously → systematic methods 

• Approach of today: detailed description of elementary dynamical moduli for 

biological processes by means of ODEs (Ordinary Differential Equations) 

• Inspiration: reaction kinetics 

• basic building blocks in constructing networks of interactions for known 

biochemical pathways 

9.2 Biological moduli as ODEs 

• what is a ODE? 

Consider x = concentration of a substrate X (e.g. mRNA, protein, small molecule, metabolite, 

any reagent) 

• at time t + Δt, (Δt small) one can expand in Taylor series 

                                                     x(t + Δt) x(t) + kx(t)Δt 

• in the limit for small times  

 

• 1st order, linear, autonomous ordinary differential equation 

• it involves two different quantities: 

o x = state variable 
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o k = parameter (does not describe an elementary component of the process) 

• it describes a reaction rate, i.e., how the concentration of 

X varies with time. 

9.3 Maltus Law 

 

The characteristic evolution of the Maltus law is exponential and depends on the sign of k 

1. k > 0 exponential growth 

 

 

 

 

2. k < 0 exponential decay 
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9.4 Solving ODEs: Matlab 

• Apart from simple cases (like Maltus law) there is little chance to find explicit solutions 

of an ODE or of a system of ODEs. How to proceed then? 

• Use a simulator to numerically integrate the ODEs. 

• example: ANSYS CFD, Matlab (standard software in all engineering fields) 

• define a function for the ODE 

function dzdt = Maltus(t,z,k); 

dzdt=k*z; 

• define parameter, initial condition, time interval 

k = 0.7; % growth constant 

x0 = 1; % initial condition 

tspan = [0, 5]; % time interval 

• integration routine 

[t,x] = ode45(@Maltus,tspan,x0,[],k); 

 

9.5 Qualitative behavior: steady state 

• what is the long time behavior? x(∞) =??? 

• if one is lucky it coincides with the steady state solution of the ODE: steady state(s) is 

the value(s) xss of x for which 

  

since dx=dt = 0, the rate does not change → ODE “stays 

there” forever 

• a steady state xss is said stable when 

changing the initialconditions the  

steady state remains the same 

• when is a steady state stable? 
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• for the Maltus law dx=dt = kx 

 

• the decay dx=dt = kx, k < 0 can be seen as a kinetic reaction (in which I am not interested 

in the product of the degradation): 

 

• to analyze more complex reactions: law of mass action when 2 or more reactants 

are involved in a reaction step, the reaction rates are proportional to the product of 

their concentrations 

• justification: macroscopic version of collision theory 

• validity: 

o constant temperature 

o medium must be well-mixed 

o # of molecules must be high 

• bimolecular reaction 

 

• dissociation 
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• reversible dissociation 

 

9.6 Elementary reaction kinetics 

• conservation laws (e.g. mass conservation) can be used to reduce the number of equations 

involved: 

• example: 

 

hence the system of 3 ODEs reduces to the scalar ODE 

 

once I solve this ODE (homework: write your Matlab routine) for z(t) I can recover 

 

9.7 Enzyme catalyzed reactions 

• most reactions need to be catalyzed to take place at interesting rates 

• enzymes = proteins that convert specific reactants (called substrates) into products while 

remaining basically unchanged 
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9.8 Enzyme catalyzed reactions 

• rate of production depends nonlinearly on the concentration of the substrate 

 

9.9 Enzyme catalyzed reactions 

• simplifications: 

• last equation does not feedback =) I can ignore it and get p(t) by integration once I have 

c(t) 

• conservation of mass for the enzyme: 

 

often at t = 0 one has c(0) = 0 and e(0) = eo 

• → another equation can be eliminated 

 

• how do you solve these? 

9.10 Michaelis Menten kinetics 

• quasi steady state approximation: after a transient period in which the enzyme “fills up”, 

the amount of complex C stays (almost) the same: 
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→ system reduces to a scalar ODE 

 

• meaning of a Michaelis Menten reaction kinetics 

 

• it introduces a saturating behavior in the dynamics 

• often more realistic than Maltus law even when the substrate is abundant 

 

9.11 “True” vs MM reaction 

• looking again at the ODE, there are 2 time scales 

• “slow time scale” in which c can be thought of as constant → quasi steady state 

approximation holds 

• “fast time scale” (in which the approximation does not hold) 

• in short: c(t) adjusts very fast to the steady state solution 
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slow time scale: 

 

 

• more rigorous analysis: singular perturbation theory 

9.12 Matlab code used 

• function for a system of ODEs: same as scalar ODEs 

% function for enzyme reaction 

% with Michaelis-Menten kinetics 

% system of 2 ODEs 

function dzdt = f enz mich ment1(t,z); 

% pass the parameters to the function 

global k1 k1m k2 e0 

% extract the states from the vector z 

s=z(1); 

c=z(2); 

% ODEs 

dsdt=k1m*c-k1*s*(e0-c); 

dcdt=k1*s*(e0-c)-(k1m+k2)*c; 

% output vector 

dzdt=[dsdt; dcdt]; 

• integration routine 

[t,z] = ode45(@f enz mich ment1,tspan,z0,[]); 


